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1 Introduction

Anonymization is a critical issue because data protection regulations such as the European Direc-
tive 95/46/EC and the European General Data Protection Regulation (GDPR) explicitly exclude
from their scope “anonymous information” and “personal data rendered anonymous”1. However,
turning this general statement into effective criteria is not an easy task. In order to facilitate the
implementation of this provision, the Working Party 29 (WP29) has published in April 2014 an
Opinion on Anonymization Techniques2. This Opinion puts forward three criteria correspond-
ing to three risks called respectively “singling out”, “linkability” and “inference”. In this paper,
we first discuss these criteria and suggest that they are neither necessary nor effective to decide
upon the robustness of an anonymization algorithm (Section 2). Then we propose an alternative
approach relying on the notions of acceptable versus unacceptable inferences (Section 3) and we
introduce differential testing, a practical way to implement this approach using machine learning
techniques (Section 4). The last section discusses related work and suggests avenues for future
research (Section 5).

2 Analysis of the criteria of the Working Party 29

The WP29 recommends that data controllers consider three risks to assess the robustness of their
anonymization algorithm:

• Singling out, which is the “possibility to isolate some or all records which identify an indi-
vidual in the dataset”.

• Linkability, which is the “ability to link at least two records concerning the same data subject
or a group of data subjects (either in the same database or in two different databases)”.

• Inference, which is the “possibility to deduce, with significant probability, the value of an
attribute from the values of other attributes”.

As discussed in the introduction, the goal of the WP29 was to provide an interpretation of the
Directive 95/46/EC with regard to anonymization and to facilitate its implementation. The main
issue to be addressed is therefore the relevance and usefulness of the criteria for this purpose. A
first observation concerning the legal sources is that both the Directive and the GDPR heavily rely
on the notion of “identifiability”. A personal data is defined in the GDPR as “any information
related to an identified or identifiable natural person” and a dataset is considered as properly
anonymized if “the data subject is no longer identifiable”. Taking a broader perspective, singling
out, linking and inference can actually be seen as three different ways of deriving new information
(or attributes in the database terminology) about individuals.

First, we want to stress that the WP29 criteria are neither necessary conditions nor effective
means to assess anonymization algorithms. They are not necessary because they do not take into

1Recital 26 of the European General Data Protection Regulation.
2Article 29 Data Protection Working Party, Opinion 05/2014 on Anonymization Techniques, adopted 10 April

2014.
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account the type of information that can be derived. In some cases, this information may actually
be insignificant, noisy or even useless. As an illustration, the RAPPOR technology ensures that
individual data are randomized in such a way that they keep a global utility without jeopardizing
individual privacy [8]. Even though individual data do not pass the “singling out” and “linkability”
criteria, it can be shown that RAPPOR offers a high level of privacy (in particular, it provides
strong deniability and ε-differential privacy guarantees).

As far as effectiveness is concerned, it depends very much on the precise meaning of “infer-
ence” in the third criterion. If inference is taken in a very general sense, considering any type of
attribute and inference technique, then it can be argued that this criterion is so powerful that it
encompasses all possible ways to identify individuals (in the sense of associating and individual
with an attribute). However, this interpretation would also be meaningless as it would accept
only datasets without any utility at all. Indeed, the ultimate usefulness of a dataset is always to
infer new information, for example by discovering new links or correlations between attributes.
Therefore, a dataset passing the third test in this strong sense would necessarily be useless. The
only way to make this criterion meaningful would be to qualify it and consider inferences of at-
tributes about “specific” individuals with “sufficient” accuracy. But then we face the threshold
issue: where should the red line be put to decide upon “specific” and “sufficient”. For example,
inferring an attribute about the population of a city, or a rule like “a man smoking between 1
and 4 cigarettes per day is 3 times more likely to die from lung cancer than a non-smoker” should
clearly be acceptable. However, deriving attributes about the inhabitants of a building may or
may not be acceptable depending on the size of the building. More generally, deriving information
about a person should be considered in a different way when this information also applies to a
population as a whole3 (e.g. population statistics). Therefore, inference as such is not a clear-cut
criterion. It should involve other fine tuned parameters which are not necessarily objective (i.e.
they may result from political or collective decisions about what is considered as acceptable or
not in society).

The second point that we would like to emphasize is that the concept of data re-identification of
anonymized datasets is misleading: attribute inference should be the primary concern. El Emam
and Alvarez [6] argue that, instead of attribute inference, identity disclosure should be mitigated.
Their argument is based on the observation that automatically preventing attribute inferences
usually lead to useless datasets. According to them, it is not the inference per se, but rather its
usage that can be “discriminatory, creepy, surprising, or stigmatizing”. They recommend that
a privacy ethics council should advise whether the resulting “anonymized” dataset can be safely
released or not and under which conditions.

Although we agree that the release of anonymized datasets should be reviewed and controlled
by a review board, we believe that the situation is a bit more complex. First, we argue that while
the mitigation of “identity disclosure” is the primary goal of pseudo-anonymisation schemes, it
is not relevant for data anonymisation schemes. Indeed, for an adversary, identity disclosure
is the assignment of a correct identity to an anonymized record. However, if a dataset is cor-
rectly anonymized, its records are very likely to be highly noised or aggregated (as opposed to
pseudo-anonymisation schemes where the identifiers are just removed, and the data are published
without transformation). Therefore, re-identification becomes pointless, as the adversary would
then potentially re-identify some noisy records that would certainly be useless.

We should avoid the fetichization of the notion of identity and rather see identity disclosure as
one way among others to infer information about individuals (by identifying or singling out their
records). Even though in some places the wording of the Directive 95/46/EC and the GDPR seem
to focus on identity disclosure, they are not entirely consistent to this respect4 and we believe

3This comment is in line with the distinction between “personal information” and “private information” made
by Franck McSherry [1]. Private information is seen as “secrets that you can keep by withholding your data”
whereas “personal data” could be derived by inference from datasets in which you are not necessarily involved.

4For example, Recital 26 stresses the fact that “personal data which have undergone pseudonymisation, which
could be attributed to a natural person by the use of additional information should be considered to be information
on an identifiable natural person”, which entails that protection against identity disclosure is not sufficient to make
a dataset anonymous.
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that the WP29 is right in taking a more general interpretation. However, as discussed above,
we are not convinced that its three criteria can be really effective in practice. Considering that
inference is the key issue, we believe that anonymized datasets should be assessed by the yardstick
of inference techniques, in order to assess both

• privacy risks, which can be seen as the risks of inferring privacy intrusive information and

• benefits, which can be seen as the possibility of inferring useful (and legitimate) information.

The heart of the matter is therefore a risk-benefit analysis relying on a precise study of the
inferences that can be drawn from the dataset followed by decisions about where the line should
be put between acceptable and unacceptable inferences. In the next sections, we successively
refine this notion of acceptable and unacceptable inferences (Section 3) and propose an approach
to implement it using machine learning techniques (Section 4).

3 Beyond de-identification: private versus public inferences

As argued in the previous section, the ability to perform inferences is the key issue with respect
to both privacy and utility. It is a well-known fact, however that automatically preventing the
inference of attribute values is difficult and often leads to useless or at least very noisy or aggregated
datasets. Hence, we are facing the following dilemma: how can anonymized datasets be useful
and still protect against undesirable inferences?

To solve this dilemma, we consider the following notion of privacy in this paper. The in-
tuition is that if an adversary cannot prove that the record of a user was used to generate the
anonymized dataset, then by definition this record is “protected”. In other words, a dataset is
deemed “anonymized” according to our model if it can be shown that, for any user, the result-
ing inferences based on this dataset do not depend on the user’s contribution (or record) but on
the contribution of other users (which may be correlated): the inference accuracy and certainty
should be about the same whether the user’s record is included or not in the dataset. This model
therefore protects against “private” inferences while still allowing “group/public” inferences.

It might happen that the properties of the population can be used to build a model that can
be applied to individuals with high accuracy [2]. However, we do not consider this to be a privacy
breach as long as the group/population size is large enough. Instead, as in [7], we believe that
there are acceptable and unacceptable disclosures: ”learning statistics about a large population of
individuals is acceptable, but learning how an individual differs from the population is a privacy
breach”.

We acknowledge that, because of their nature, certain “group” inferences can still be harmful,
which means that the release of the resulting anonymized dataset should still be reviewed and
controlled by a privacy ethics committee. Generally speaking, the decisions to release a dataset
should always be part of a rigorous privacy risk analysis, which systematically identifies the risks
and the potential benefits of publishing the datasets [4].

To summarize, we argue that the challenge is to provide criteria to distinguish between accept-
able and unacceptable inferences. We believe that acceptability can be based on two criteria:

1. The basis of the inference: is the inference performed on the basis of the records of one (or
a small group of) individual(s) or on the basis of the records of a large group of individuals,
i.e. a “population”?

2. The nature of the inference: can the inference be used to discriminate users? Can it have a
very negative (for example social or financial) impact?

The second criterion is partly subjective and involves ethical and legal considerations. In this
paper, we focus on the first criterion and introduce, in the next section, a scheme called differential
testing to assess the basis of the inference.

The main idea of our scheme is to use Machine Learning to predict the sensitive attribute
of users (attributes that are usually not quasi-identifiers but rather represent some information
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not to be revealed about the user such as medical diagnosis, salary, locations, etc.). We assume
we have a dataset composed of several users and its anonymized version (and each user has a
sensitive attribute). For each user, we infer his sensitive attribute value using the anonymized
dataset as input to our machine learning algorithm. We then remove the user record from the
original dataset and generate another anonymized dataset. We again infer the user’s sensitive
attribute value using the new anonymized dataset. In both cases, the output of the inference is
a distribution on all possible values of the sensitive attribute, i.e., the probability that the user’s
sensitive attribute has a particular value in the original dataset according to the machine learning
algorithm. If these distributions are similar, we consider that the inference was based on a group
since the inclusion of the user’s record does not impact the prediction. On the other hand, if the
distributions are different, we conclude that the inference is ”individual” since a user’s record can
have a substantial impact on the prediction distribution5.

4 Differential testing: a machine learning based process

We first introduce some technical assumptions (Section 4.1), then describe (adversarial) inference
of attribute values more precisely (Section 4.2). We also provide some intuition about the differ-
ential testing procedure and present its more formal definition along with a discussion (Section
4.3).

4.1 Assumptions

In general, the goal of an adversary is to learn new information about an individual or group of
individuals by combining his (prior) background knowledge about the targets and the anonymized
(or sanitized) dataset f(D), where f is the sanitization (anonymization) mechanism. We assume
that the target individuals are always part of D, which has microdata format (i.e., each row of
D contains a set of attributes of a single individual). We distinguish between the attributes in
D, called internal attributes, and the external attributes which represent any information about
an individual that is not explicitly inside D. An external attribute may strongly correlate with
any internal attribute. The background knowledge of the adversary can come from internal or
external attributes of the target (or other individuals in D) and any other auxiliary information
which represent common knowledge, such as public statistics of sensitive attributes. We also
assume that f ’s output has the same microdata format as its input.

4.2 Towards Differential Testing

The learning of any attribute is modeled as a statistical inference process executed by the adversary
and illustrated in Figure 1. It takes any internal/external attributes (i.e., background knowledge)
of its targets and combines them with f(D) in a statistical or machine learning model in order
to infer further attributes. The output of the machine learning model is a distribution on the
domain of the attribute to be inferred. For example, the adversary can train a Naive Bayes
classifier to predict the nationality of a person. If there are 196 countries worldwide, the model
will output a probability value assigned to each possible country, which represents the certainty
of the adversary that the person is from a particular country. More precisely, the adversary
has already some confidence in each possible attribute value a priori when it has no access to
f(D) (Figure 1a), and it aims to increase this confidence by using f(D) as an extra evidence in
the inference process (Figure 1b). In general, any inference or learning is characterized by the
difference between the prior and posterior distributions of the inferred attribute values.

However, as discussed in the previous sections, the above inference is the core of any learning
process to derive useful information about the dataset, which is the ultimate goal of the release.
In fact, we should rather focus on inferences that can differentiate a single individual from the
rest of the dataset. These inferences are potentially privacy-invasive, as they represent private

5The choice of the ML algorithm(s) is important. We will address in future work what should be its properties.
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Figure 1: Adversarial inference. M can be any machine learning model such as Naive Bayes,
decision trees, neural networks, etc. In general terms, absolute privacy is defined as the difference
between the prior and posterior distributions of the inferred attribute.

information which is specific to the individual, that is, not shared with anybody else in the
dataset. The following definition translates this intuition in more technical terms.

Definition 1 (Differentiator learning model) Let D−i denote a dataset obtained from D by
removing individual i ∈ D fromD. LetM be a machine learning model which induces a probability
distribution Ms on the domain of attribute s. M is a δ-differentiator of attribute s in D, if

• Average-case differentiation: (1/|D|)∑i∈D sim(Ms(f(D)),Ms(f(D−i ))) ≤ σ

• Worst-case differentiation: maxi∈D sim(Ms(f(D)),Ms(f(D−i ))) ≤ σ

where sim is a similarity measure on the output distribution Ms.

Intuitively, a differentiator inference represents the individual’s own secret which can only be
revealed if the individual participates in the dataset. Therefore, such secret should not be inferred
from an anonymized (or sanitized) dataset. To verify whether a data release is sanitized prudently,
one should measure the differentiation of all inferences with respect to all attributes in the dataset,
which is infeasible. Computing the differentiation of state-of-the-art learning models (e.g., using a
standard machine learning library6) or design new models which are believed to have the largest
differentiation may be sufficient to assess privacy in practice.

In Definition 1, we deliberately did not define the exact similarity measure between the dis-
tribution on the attribute domain. One can use any similarity metric for this purpose such as
KL-divergence, Earth-Mover Distance, or the maximum divergence used by differential privacy
[5].

For simplicity, we omitted the background knowledge from the formulation of the differentiator
M in Definition 1. In practice, we assume that the differentiator uses all internal attribute values
of the targeted individual except the sensitive attribute to be inferred. However, it should not be
constrained to use only internal attributes and potentially be provided with additional auxiliary
information such as public statistics about the sensitive attribute.

Our approach is illustrated in Figure 2, and can be be summarized as follows:

1. For each record, ri, of the original dataset D:

• Step 1:

– Anonymise the dataset to obtain the anonymized dataset f(D)

– Predict from f(D) the sensitive attribute (s) distribution using a machine learning
algorithm.

• Step2:

6http://scikit-learn.org/
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– Remove ri from the D and anonymize it to obtain f(D−i ).

– Predict from f(D−i ) the sensitive attribute distribution (s′) using the same machine
learning algorithm as in Step1.

2. Testing step: If the two distributions s and s′ are similar, according to a similarity measure
to be defined, then the test is successful since the prediction does not depend on the actual
record of the target data subject but rather based on other users.

External
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Auxiliary
information

INPUT: Evidence

Machine learning model
M

OUTPUT:
(Posterior) Distribution of
sensitive attribute values

(a) Inference with all sanitized records
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(Posterior) Distribution of
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(b) Inference without record i

Figure 2: δ-differentiator model: posterior distributions on D and D−i differ with at most δ

5 Conclusion

Our proposal is related to the empirical privacy model introduced in [3]. In fact, the empirical
privacy model also proposes to test whether the sensitive attribute(s) can be predicted from the
released dataset. However, it does not make the distinction between acceptable and unacceptable
inferences. It considers all types of inferences as privacy breaches. More precisely, the scheme
tries to predict, for each entry, the sensitive attribute(s) using, for example, machine learning
techniques, and checks whether the obtained predicted value is actually “similar” to the actual
value(s) of the original entry. If the predicted value is close to the actual value (what they call
“empirical utility”), the anonymisation scheme does not pass the test. Note that the scheme does
not consider whether the prediction was obtained from the records of the tested user (that was
somehow poorly anonymized) or from the records of other users (that happen to be correlated
with the tested user). In contract, our proposal does not consider data utility (i.e. does not check
whether the inferences are correct), but instead propose to modify this testing procedure to make
the distinction between private and public inferences. Our goal is to define a testing procedure
that only prevents private predictions and, as a result, provides better data utility.

Note that our scheme is also related to the differential privacy model [5]. In fact, our scheme
guarantees that, similarly to differential privacy, the predicted sensitive attributes are similar
whether that user was part of the anonymised dataset or not. However, our differentiation test
provides strictly weaker guarantee than differential privacy. First, we compare the posterior in-
ferences on datasets which can differ only in records included in the original dataset. That is, we
do not provide any privacy guarantee to individuals who are not in the dataset. For example, one
might learn from the sanitized dataset that a user was not part of the dataset. Second, we do not
guarantee an upper bound on the differentiation of all possible inferences unlike differential pri-
vacy. Finally, differential privacy is a property of the sanitization scheme, while our differentiation
property holds for a particular inference model, dataset and sensitive attribute. Still, we believe
that our differentiation test can be more practical when micro-data is released and differential
privacy provides weak utility. In addition, if a differentiator inference model is easily interpretable
(such as decision trees), more insights may be provided about why privacy can be violated in
practice. That is, our approach may provide a more accessible assessment of privacy than ε in
differential privacy.
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Our work is still very preliminary and some (important) issues are still open. For example,
the choice of the ML algorithm(s) is important. In future work, we will address what should be
its properties. Furthermore, the distribution similarity function plays an important role in our
scheme. It should be selected and analyzed carefully. We do not consider that there is a privacy
breach as long as the group/population size is large enough (i.e. the probability of the inferences
is not overwhelmingly large) but this size issue is not fully studied in this paper. This will be
addressed in future work.
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