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INTRODUCTION 

The volume of genetic data  is growing — some estimates predict between 100 million and 
1

2 billion human genomes will be sequenced by 2025 worldwide.  While the number of 
2

people whose genomes have been sequenced is relatively small in comparison with the 
total patient population, genetic sequencing is becoming faster and less expensive, and 
shared databases of genetic data are increasingly proliferating. Genetic data represents 
an important and burgeoning subsection of personal data that is being produced by both 
consumer-facing and healthcare-directed companies for genealogical or health 
purposes. The collection and processing of genetic data have been shown to accelerate 
biomedical discoveries and to aid in personalized medicine. As genetic data continues to 
be generated at a growing rate, data storage requirements are likely to be enormous as 
distribution moves toward cloud-based infrastructure.  Ensuring security and privacy will 

3

be increasingly important to maintain trust, particularly in light of the risks presented by 
privacy breaches involving patient information.  

4

 
Genetic data is typically stored with or linked to identifying or quasi-identifying records 
(e.g. electronic health records, consumer profiles, socio-demographic information, and 
other clinical information).  The most common approach for protecting genetic data today 

5

1Genetic information is defined under the Health Insurance Portability and Accountability Act (HIPAA) as: 
“with respect to an individual, information about:  

(i) The individual’s genetic tests;  
(ii) The genetic tests of family members of the individual;  
(iii) The manifestation of a disease or disorder in family members of such individual; or  

(iv) Any request for, or receipt of, genetic services, or participation in clinical research which includes 
genetic services, by the individual or any family member of the individual.” 

See: ‘45 CFR 160.103 - Definitions.’ (LII / Legal Information Institute) 
<https://www.law.cornell.edu/cfr/text/45/160.103> accessed 6 March 2018.‘45 CFR 160.103 - Definitions.’ (LII 
/ Legal Information Institute) <https://www.law.cornell.edu/cfr/text/45/160.103> accessed 6 March 2018.; For 
the purposes of this paper, we define genetic data as data that concerns information about an individual’s 
inherited or acquired genetic characteristics, as well as phenotypic characteristics which can be inferred 
based on specific genetic characteristics, derived from the sequencing or analysis of human DNA, RNA, 
and chromosomes. Sequencing is typically accomplished through gene sequencing, exome sequencing, 
and whole genome sequencing (WGS). The analysis of human DNA includes targeted diagnostics, 
population-based screening tests, large-scale platforms, and other genetic testing techniques. 
2 Zachary D. Stephens and others, ‘Big Data: Astronomical or Genomical?’ (2015) 13 PLOS Biol e1002195. 
3 ibid. 
4 Identity Theft Resource Center, ‘ITRC Data Breach Report 2016’ (2017) 
<http://www.idtheftcenter.org/images/breach/2016/DataBreachReport_2016.pdf> accessed 4 May 
2017.Identity Theft Resource Center, ‘ITRC Data Breach Report 2016’ (2017) 
<http://www.idtheftcenter.org/images/breach/2016/DataBreachReport_2016.pdf> accessed 4 May 2017. 
5 Simson Garfinkel, ‘De-Identification of Personal Information’ (2015) NISTIR 8053. Simson Garfinkel (n 21). 
Simson Garfinkel (n 20). Simson Garfinkel (n 19). 
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is de-identification of information that accompanies it (e.g. “accompanying personal 
data”). In the US, the Health Information Portability and Accountability Act (HIPAA) Privacy 
Rule protects individual privacy by limiting the use and disclosure of individuals’ 
protected health information (PHI)  when held by a covered entity or business associate  

6 7

and specifies the circumstances under which PHI is considered de-identified. After PHI 
has been de-identified, there are no restrictions on how the information may be 
disclosed by covered entities or business associates. According to the HIPAA Privacy 
Rule, genetic data and its accompanying personal data must be de-identified when 
utilized for purposes other than treatment, payment, or healthcare operations. 
De-identification may be achieved by either reliance on an expert or via the Safe Harbor 
Method, which has become the standard practice due to the ease of its implementation. 
The Safe Harbor Method requires the removal of specific identifiers for data to qualify as 
de-identified, including data points like: names, email addresses, social security numbers, 
and more. Genetic data itself is not explicitly specified as one of the 18 specific identifiers 
that must be removed for data to be considered de-identified, and therefore it may be 
possible to release such data for the purposes of analysis under the HIPAA Privacy Rule.  8

On the other hand, biometric identifiers are specified as one of the 18 identifiers that 
must be removed under HIPAA Safe Harbor, and there is growing interest in utilizing 
DNA typing methods for biometric purposes.   

9

 
While the relevant US federal agencies have yet to rule on whether they consider genetic 
data itself to be personal information, there is an increasing belief among academics and 
privacy professionals that genetic data presents unique potential privacy risks, as it 
remains largely unaltered during one’s lifetime, and often implicates both the individual’s 
family members and future generations, and poses significance for particular cultural 
groups and individuals. Further, genetic data contains information related to a variety of 
factors such as ethnic heritage and disease predispositions, among other distinguishing 
traits. Due to these unique characteristics, many have argued that genetic data should 
warrant a higher level of privacy protection than traditional health information.  Others 

10

6 According to the HIPAA Privacy Rule, PHI is information, including demographic information that relates to 
past, present, or future physical or mental health status or condition. Provision of healthcare, or payment for 
the provision of healthcare in any form (written, electronic, or oral) that identifies the individual or for which 
there is a reasonable basis to believe can be used to identify the individual. See 45 CFR 160.103, 164.502. 
7 Covered entities are defined as health plans, health care clearinghouses, health care providers who 
transmit PHI, and business associates, where applicable. Business associates are organizations with whom 
covered entities share health information to help carry out their activities and functions. See: 45 CFR 
160.102. 
8 A 2013 amendment to the HIPAA Privacy Rule incorporated genetic information into the definition of 
“health information.” Health and Human Services Department. s.l. : Federal Register, Jan 25, 2013, pp. 
5565-5702. 78 FR 5565. 
9 National Institute of Standards and Technology, ‘DNA Biometrics’ 
<https://www.nist.gov/programs-projects/dna-biometrics> created March 11, 2010, updated July 13, 2017.; 
‘IBIA I Biometric Technologies I DNA’ 
<https://www.ibia.org/biometrics-and-identity/biometric-technologies/dna> accessed 16 July 2018. 
10 Genetic exceptionalism is the concept that genetic information should be treated differently from other 
health information for the purposes of data access and permissible use. While we do not engage in the 
genetic exceptionalism debate in this paper, we considered whether or not genomic data should be 
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have argued that research involving sequencing of so-called “anonymous” genetic data 
should be considered human subjects research,  thus requiring more nuanced consent 

11

and scrutiny by institutional review boards (IRBs).   
12

 
Researchers in the past 10 years have begun to document several theoretical ways in 
which the privacy of genetic data, whose accompanying personal data has been 
de-identified, may be compromised through re-identification;  the methods of such 

13

re-identification attacks are also evolving and becoming increasingly feasible.  Genetic 
14

privacy has thus emerged as a legitimate, yet challenging concern for both individuals 
and their families. In light of these studies, it is increasingly likely that new techniques will 
be required to ensure that genetic data does not become readily identifiable and to keep 
pace with the emergence of new re-identification risks for genetic data. 
 
However, applying more advanced de-identification techniques may not be functional in 
practice—as the strength of the de-identification techniques applied can have a negative 
impact on a dataset’s utility. There is often a tradeoff between the level of privacy 
protection afforded, and the level of utility in the data, a concept well understood in 
statistical disclosure control communities  and increasingly acknowledged by genetic 

15

communities as scientific norms and capabilities evolve.  Researchers require access to 
16

robust data for genetic studies, and further de-identifying genetic data could greatly 
thwart research, especially if phenotypic data needs to be analyzed alongside the 

protected differently from other PHI due to the challenges posed by de-identification. For literature related 
to genetic exceptionalism, see: Emily Darraj and Brian Mcelyea, ‘Security and Privacy of Genomic Data’ 
(Northrop Grumman Corporation 2017).; Jennifer Kulynych and Henry T Greely, ‘Clinical Genomics, Big 
Data, and Electronic Medical Records: Reconciling Patient Rights with Research When Privacy and Science 
Collide’ (2017) 4 Journal of Law and the Biosciences 94.; & Amy L. McGuire and others, ‘Confidentiality, 
Privacy, and Security of Genetic and Genomic Test Information in Electronic Health Records: Points to 
Consider’ (Genetics in Medicine, 1 July 2008) <https://www.nature.com/articles/gim200876> accessed 9 
January 2018. 
11 Human subjects research is defined as research involving “an individual about whom an 
investigator…conducting research obtains (1) data through intervention or interaction with the individual, or 
(2) identifiable private information.” See: Protection of Human Subjects, 45 Code of Federal Regulations 
(CFR) Part 46 2009 4. 
12 Amy L. McGuire and Richard A. Gibbs, ‘No Longer De-Identified’ (2006) 312 Science 370.  
13 Yaniv Erlich and Arvind Narayanan, ‘Routes for Breaching and Protecting Genetic Privacy’ (2014) 15 
Nature Reviews Genetics 409.  
14 Ewan Birney, Jessica Vamathevan and Peter Goodhand, ‘Genomics in Healthcare: GA4GH Looks to 
2022’ [2017] bioRxiv 203554.; Ruichu Cai and others, ‘Deterministic Identification of Specific Individuals 
from GWAS Results’ [2015] Bioinformatics btv018.; Arif Harmanci and Mark Gerstein, ‘Quantification of 
Private Information Leakage from Phenotype-Genotype Data: Linking Attacks’ (2016) 13 Nature Methods 
251. 
15 George T. Duncan, Sallie A. Keller-McNulty and S. Lynne Stokes, ‘Disclosure Risk vs. Data Utility: The R-U 
Confidentiality Map’ (Los Alamos National Laboratory 2001) LA-UR-01-6428. 
https://pdfs.semanticscholar.org/aae7/2110a204e0db8eaab9a9941c7a3b2ecef354.pdf 
16 Jalayne J. Arias, Genevieve Pham-Kanter and Eric G Campbell, ‘The Growth and Gaps of Genetic Data 
Sharing Policies in the United States’ [2014] Journal of Law and the Biosciences lsu032.; Jill O Robinson 
and others, ‘It Depends Whose Data Are Being Shared: Considerations for Genomic Data Sharing Policies’ 
[2015] Journal of Law and the Biosciences lsv030. 
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genetic information.  Other privacy-enhancing technologies will be needed to address 
17

the unique risks posed by genetic data, while maintaining utility and promoting data 
sharing.  
 
This paper begins by detailing the current regulatory framework for how protected health 
information (PHI) is currently de-identified. Section I specifically walks through the 
de-identification methods set out in the HIPAA Privacy Rule and explains how genetic 
data fits into the regulation. Section II  highlights the major re-identification research 
challenging the appropriateness of current de-identification practices for genetic data. 
Section III walks through the benefits and challenges posed by new technological 
innovations in this space, including privacy enhancing technologies like secure 
computation and differential privacy. And finally, Section IV  describes the need for 
governance mechanisms - including access controls and data use agreements - in 
addition to de-identification throughout the information management life cycle of genetic 
data to minimize the risk of re-identification, highlighting model guidance documents and 
policies from organizations currently collecting and sharing genetic data.  

 

I. REGULATORY REQUIREMENTS FOR DE-IDENTIFICATION OF 
PROTECTED HEALTH INFORMATION (PHI) 

 
De-identification is the process of dissolving the relationship between a dataset and an 
individual, via a variety of approaches, algorithms, and tools, so that the disclosure of 
information from that dataset cannot reasonably be linked back to an identified 
individual.  How clearly any particular data point can be associated with an individual lies 

18

on a continuum—from data that explicitly identifies an individual (such as a name or 
photo) to completely anonymous data that is not and could not be associated to a 
specific individual (such as a statistical figure), with many shades of grey in between.   

19

 
Some types of information readily identify an individual and are known as “direct 
identifiers” (such as a name, social security number, or email address). Other types of 
information may identify an individual only when combined with other information (such 
as a date of birth, home ZIP code, or medical condition); these are known as “indirect 
identifiers” or “quasi-identifiers.” In order to reduce the risk that an individual can have 
their privacy violated by being identified in a dataset, both types of identifiers must be 
addressed. 
 

17 Jules Polonetsky, Omer Tene and Kelsey Finch, ‘Shades of Gray: Seeing the Full Spectrum of Practical 
Data De-Identification’ (2016) 56 Santa Clara Law Review 593. 
http://digitalcommons.law.scu.edu/cgi/viewcontent.cgi?article=2827&context=lawreview 
18 L. Willenborg and T. de Waal, Elements of Statistical Disclosure Control (Springer-Verlag 2001). 
19 Polonetsky, Tene and Finch (n 16). Polonetsky, Tene and Finch (n 17). Polonetsky, Tene and Finch (n 16). 
Jules Polonetsky, Omer Tene and Kelsey Finch, ‘Shades of Gray: Seeing the Full Spectrum of Practical Data 
De-Identification’ (2016) 56 Santa Clara Law Review 593. 
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A number of techniques are used alone or in combination to remove or manipulate 
identifiers in a dataset, including: limiting the amount of data released 
(minimization/sampling); suppressing, generalizing, or aggregating fields or records; and 
statistically degrading the data by adding random noise (perturbation).  Each 

20

de-identification technique has disadvantages and advantages, dependent upon the type 
of data being manipulated, to whom the data will be disclosed, and how the data will be 
used. The disclosure of personal information can occur in two distinct forms: identity 
disclosure and attribute disclosure. Identity disclosure is the process by which an 
individual is assigned to a particular record in a dataset; attribute disclosure is the 
process by which a characteristic is revealed or inferred about a specific individual in a 
dataset without knowing which specific record belongs to the individual.  

21

 
For genetic data, one example of a possible identity disclosure could be the identification 
of a particular individual in a genetic dataset that also contains state residence. An 
individual could be singled out in the dataset if that individual has a rare disease that only 
affects a limited number of individuals worldwide. Knowing the geographic location could 
make an individual unique under these circumstances (he/she is the only individual in 
that location with that disease). Attribute disclosure results from an adversary learning 
private information without necessarily identifying a particular individual. An example of 
attribute disclosure would be someone learning that people of a certain demographic 
group carry the gene for a particular inherited disease, such as Huntington’s disease. As 
our knowledge of genetics is still growing, genetic data that does not disclose attributes 
about individuals or groups today may do so in the future. The harms related to each of 
these types of disclosures (both perceived and true) can vary from reputational, to 
opportunity, to financial harms. Many individuals fear that information derived from their 
genetic data may be misused or abused, specifically for discrimination purposes.  

22

Additionally, these disclosures and subsequent harms could result in group privacy 
concerns, as the information that may be derived from an individual’s genetic data may 
extend to the individual’s family members and future generations.  
 

The HIPAA Privacy Rule 

The HIPAA Privacy Rule defines information as de-identified when “there is no 
reasonable basis to believe that the information can be used to identify an individual.”  

23

20 Salinger Privacy, ‘Demystifying De-Identification: An Introductory Guide for Privacy Officers, Lawyers, 
Risk Managers and Anyone Else Who Feels a Bit Bewildered.’  
21 Khaled El Emam, Guide to the De-Identification of Personal Health Information (CRC Press (Auerbach) 
2013).; Attribute disclosure may occur with or without identity disclosure; identity disclosure can lead to 
attribute disclosure, and vice-versa.  
22 E. Clayton, “Ethical, legal, and social implications of genomic medicine,” New England J. Med., vol. 349, 
pp. 562–569, 2003.; M. Rothstein and P. Epps, “Ethical and legal implications of pharmacogenomics,” 
Nature Rev. Genetics, vol. 2, pp. 228–231, 2001. 
23 Office for Civil Rights, ‘Guidance Regarding Methods for De-Identification of Protected Health Information 
in Accordance with the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule’ 
(Department of Health and Human Services, 2012). 
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As is the case for the different federal and provincial health privacy laws in Canada and 
the EU, HIPAA only concerns itself with identity disclosure. The HIPAA Privacy Rule does 
not address the identifiability risks from attribute disclosure, because protections against 
attribute disclosure could potentially destroy data utility.  For the purposes of this paper, 

24

we thus mainly are concerned with identity disclosure. 
 
The HIPAA Privacy Rule presupposes that data properly de-identified through the Safe 
Harbor Method or the Expert Determination Method pursuant to Sections 164.514(b) 
and(c) of the HIPAA Privacy Rule does not reveal individuals’ identities connected to the 
data, and is therefore not subject to the regulation.  When data is de-identified, it is no 

25

longer considered PHI and thus could be released publicly without individual consent.  
 
Under the Safe Harbor Method, data is considered de-identified when it has been 
stripped of 18 enumerated identifiers, including names, telephone numbers, email 
addresses, biometric identifiers, and social security numbers, among others.  The Safe 

26

Harbor Method also requires that the covered entity or business associate does not have 
knowledge that the PHI, alone or in combination with other information, could link a 

24 Khaled El Emam, Guide to the De-Identification of Personal Health Information (CRC Press (Auerbach) 
2013). 
25 Office for Civil Rights (n 22). 
26 The 18 identifiers under the Safe Harbor Method include:  

(1) “Names; 
(2) All geographic subdivisions smaller than a state, including street address, city, county, precinct, ZIP 

code, and their equivalent geocodes, except for the initial three digits of the ZIP code if, according 
to the current publicly available data from the Bureau of the Census: (1) The geographic unit 
formed by combining all ZIP codes with the same three initial digits contains more than 20,000 
people; and (2) The initial three digits of a ZIP code for all such geographic units containing 20,000 
or fewer people is changed to 000; 

(3) All elements of dates (except year) for dates that are directly related to an individual, including birth 
date, admission date, discharge date, death date, and all ages over 89 and all elements of dates 
(including year) indicative of such age, except that such ages and elements may be aggregated 
into a single category of age 90 or older; 

(4) Telephone numbers; 
(5) Vehicle identifiers and serial numbers, including license plate numbers; 
(6) Fax numbers; 
(7) Device identifiers and serial numbers; 
(8) Email addresses; 
(9) Web Universal Resource Locators (URLs); 
(10) Social security numbers; 
(11) Internet Protocol (IP) addresses; 
(12) Medical record numbers; 
(13) Biometric identifiers, including finger and voice prints; 
(14) Health plan beneficiary numbers; 
(15) Full-face photographs and any comparable images; 
(16) Account numbers; 
(17) Any other unique identifying number, characteristic, or code, except as permitted by paragraph (c) 

of this section [Paragraph (c) is presented below in the section “Re-identification”]; and 
(18) Certificate/license numbers.”  

See: ibid. 
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particular individual to the disclosed health information. The Privacy Rule also requires 
that covered entities and business associates adopt reasonable administrative, technical, 
and physical safeguards to protect PHI from unauthorized access, use, or disclosure.  

27

While the Safe Harbor Method is hailed for its convenience, it does not come without its 
own issues, including the risk of reidentification.  28

 
The Expert Determination Method, commonly referred to as the “statistical standard,” 
requires that a person with appropriate knowledge make the judgment and have strong 
assurances that the risk of re-identification is “very small,” by applying statistical and 
scientific principles and methods that render information not individually identifiable.  In 

29

contrast to the Safe Harbor Method, which is applied in the same manner to any dataset 
regardless of its characteristics, the Expert Determination Method allows for the fitting of 
the de-identification method to the risks associated with the specific dataset being 
analyzed —i.e., that incorporates the context of the data sharing into the risk assessment 
framework. The Expert Determination method has been criticized as being costly, 
time-limited, and difficult to obtain as the number of experts available to do such 
technical determination is small.   30

 
While de-identification will never eliminate all risks arising from personal data sharing, it 
offers a method to liberate genetic data, while at the same time protecting privacy. PHI 
that has been de-identified through the Expert Determination Method or the Safe Harbor 
Method is considered not to involve human subjects under the Common Rule,  and thus 

31

informed consent is not required for the use and/or release of such de-identified data. 
Once information has been de-identified through the Safe Harbor or Expert 
Determination methods, the data is not subject to the HIPAA Privacy Rule, and thus the 
HIPAA Privacy Rule does not limit how a covered entity or a business associate may use 
or disclose it.  
 

Genetic Data and the HIPAA Privacy Rule 

Today, genetic data is used across the clinical care continuum from predictive to 
diagnostic testing of patients. Among many other applications, genetic data is used to 
assess the likelihood and extent of a therapeutic response, the possibility of treatment 
side effects, and the risks of drug interactions.  Genomics has become important for 

32

27 45 C.F.R. §164.530(c).  
28 Sweeney, Latanya et al. “Re-identification Risks in HIPAA Safe Harbor Data: A study of data from one 
environmental health study.” Technology Science vol. 2017 (2017): 2017082801. 
<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344041/> 
29 ibid; Office for Civil Rights (n 22). 
30 Privacy Analytics, ‘Safe Harbor Versus Expert Determination’ 2015 
<https://privacy-analytics.com/de-id-university/blog/hipaa-safe-harbor-vs-expert-determination/> accessed 
December 5, 2019. See also, The HITRUST De-Identification Framework 
<https://hitrustalliance.net/de-identification/> accessed on December 5. 2019.  
31 45 CFR 46: Protection of Human Subjects (‘The Common Rule’) 1991 (Code of Federal Regulations). 
32 Leslie P. Francis, ‘Genomic Knowledge Sharing: A Review of the Ethical and Legal Issues’ (2014) 3 
Applied & Translational Genomics 111. 
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screening in oncology and obstetrics, and increasingly is impacting the practices of 
non-geneticist clinicians and being integrated into routine clinical care.  The clinical 

33

applications of genetic data, however, do not raise many privacy questions; the HIPAA 
Privacy Rule specifically permits covered entities and business associates to use 
identifiable genetic data and its accompanying personal data for treatment, payment, and 
healthcare operations without individual consent.  Covered entities and businesses also 

34

are permitted, but not required, to use and disclose genetic data without an individual’s 
authorization when sharing that information with the individual and for one of the twelve 
specified public interest purposes, such as when required by law or for public health 
activities.   

35

 
In addition to these permitted uses and disclosures, genetic data is being generated and 
used for a myriad of research purposes.  The increasing production and availability of 

36

genetic data is providing researchers with a rich resource for investigation. Technological 
advancements to process genetic data also have led to advances in biomedical research 
and science. Further, genetic data research is shifting from individual-level to 
populations-level research; this emergence of population-level research is consequently 
increasing the amount of genetic data required for such research. These shifts also are 
being accelerated not only by researchers themselves, but also by initiatives from the US 
federal government, such as the NIH All of Us Research Program.  These projects are 

37

creating the movement toward sharing more genetic data and unlocking genetic data 
sources that were previously restricted.   

38

 
When genetic data held by a covered entity or business associate is disclosed or shared 
for purposes outside  of permitted uses and disclosures specified by the HIPAA Privacy 
Rule—such as research or other secondary uses—covered entities and business 
associates must either de-identify the data or obtain consent from the individual for such 
use. Genetic data–while not addressed explicitly by the statute–presumably would fall 
into the category of PHI. As such, genetic data could be de-identified through either the 
Safe Harbor Method or the Expert Determination Method, though the Safe Harbor 
Method might be considered the most commonly used approach to de-identify data 

33 Joel B. Krier, Sarah S. Kalia and Robert C. Green, ‘Genomic Sequencing in Clinical Practice: Applications, 
Challenges, and Opportunities’ (2016) 18 Dialogues in Clinical Neuroscience 299. 
34 Office for Civil Rights (OCR), ‘Guidance: Treatment, Payment, and Health Care Operations’ (HHS.gov, 7 
January 2009) 
<https://www.hhs.gov/hipaa/for-professionals/privacy/guidance/disclosures-treatment-payment-health-care
-operations/index.html> accessed 19 April 2018. 
35 45 C.F.R. § 164.502(a)(1). 
36 Research is defined in the Privacy Rule as, “a systematic investigation, including research development, 
testing, and evaluation, designed to develop or contribute to generalizable knowledge.” See 45 CFR 
164.501. 
37 ‘National Institutes of Health (NIH) — All of Us’ <https://allofus.nih.gov/> accessed 16 July 2018. 
38 C. Heeney and others, ‘Assessing the Privacy Risks of Data Sharing in Genomics’ (2011) 14 Public Health 
Genomics 17.;Jane Kaye and others, ‘Data Sharing in Genomics – Re-Shaping Scientific Practice’ (2009) 10 
Nature reviews. Genetics 331.  
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today.  Although the Safe Harbor Method’s list of 18 identifiers includes “biometric 
39

identifiers, including finger and voice prints” or “any other unique identifying number, 
characteristic, or code,” the federal Department of Health and Human Services (HHS) 
Office of Civil Rights (OCR), which interprets and enforces the HIPAA Privacy Rule, has 
not issued guidance about whether or not genetic data should be considered a 
biometric, “other,” or is itself an identifier for the purposes of the Safe Harbor Method.  

40

Because research data de-identified according to the HIPAA Privacy Rule is considered 
not to involve human subjects, informed consent is not required for the use and/or 
release of such de-identified data. Thus, genetic data that is not associated with/linked to 
any of the 18 elements listed under Safe Harbor Method currently believed to constitute 
de-identified information.  This does not mean that the reveal of genetic data does not 

41

constitute a privacy risk.   
 
While de-identification protects many types of health data by decreasing the probability 
of re-identification, genetic data poses unique privacy challenges: because genes have 
specifically identifiable elements, they offer the possibility for re-identification when large 
sets of an individual’s genetic data, or sensitive portions thereof, are made available. In 
addition, for genetic data, the consequences of disclosures are not limited in scope or 
time as they can affect not only the individual identified, but also the relatives or 
descendants of the individual. Unlike other health data, such as heart rate or blood type, 
genetic data represents the unique combination and collection of traits that can partially 
or fully identify an individual.   

42

 
Today, it is generally recognized that while a person’s genome is individuating and 
distinguishable from other people’s genomes, it is not readily identifiable because 
identity is not readily ascertainable from the nucleotide bases themselves nor from the 
genotypic or phenotypic information derived thereof. Thus, there is still “practical 
obscurity”—interpreting genetic data currently is costly, labor-intensive, and requires 
highly skilled experts. However, as more and more genetic datasets are being produced 
and shared, the risk of re-identification has grown and the justification of genetic data’s 
“practical obscurity” is becoming less reliable.  

39 The Expert Determination Method is less frequently used in comparison to the Safe Harbor Method, 
because the Expert Determination method is more expensive and there are too few experts available for 
hire. See: William Stead, ‘Re: Recommendations on De-Identification of Protected Health Information under 
HIPAA’ 
<https://www.ncvhs.hhs.gov/wp-content/uploads/2013/12/2017-Ltr-Privacy-DeIdentification-Feb-23-Final-w-s
ig.pdf>. 
40 Kulynych and Greely (n 9). 
41 Further, the federal regulators at the Office for Human Research Protections (OHRP) who oversee 
Common Rule compliance for the Department of Health and Human Services (HHS) have not challenged 
the assumption that genomes themselves constitute de-identified information. In part due to the absence 
of any private right to sue under the Common Rule or the HIPAA Privacy Rule, there has been little if any 
case law or judicial interpretation related to the “identifiability” of genomic data. 
42 Michelle Meyer, ‘Re-Identification Is Not the Problem. The Delusion of De-Identification Is. 
(Re-Identification Symposium) | Bill of Health’ 
<http://blogs.harvard.edu/billofhealth/2013/05/22/re-identification-is-not-the-problem-the-delusion-of-de-id
entification-is-re-identification-symposium/> accessed 5 January 2018.  
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Beyond HIPAA  

While the US federal government has in practice treated genetic data as not readily 
identifiable when disclosed for research purposes, the National Institute of Health (NIH) 
has maintained that the disclosure of genetic data constitutes “a clearly unwarranted 
invasion of personal privacy” when disclosed via a Freedom of Information Act (FOIA) 
request.  In addition, the 21st Century Cures Act guards against inappropriate use of 

43

FOIA requests to gain access to genetic information of research participants in federally 
and non-federally funded research by allowing the Secretary of HHS to disqualify such 
research data from FOIA requests through Certificates of Confidentiality if: “(A) an 
individual is identified; or (B) there is at least a very small risk, as determined by current 
scientific practices or statistical methods, that some combination of the information, the 
request, and other available data sources could be used to deduce the identity of an 
individual.”  Federal interpretations of the identifiability of genetic data thus seem to be 

44

in conflict: genetic data is treated as readily identifiable for the purposes of FOIA, but not 
necessarily readily identifiable under the HIPAA Privacy Rule.   

45

 
Further, in 2011, HHS published the Advanced Notice of Proposed Rulemaking (ANPRM), 
entitled “Human Subjects Research Protections: Enhancing Protections for Research 
Subjects and Reducing Burden, Delay, and Ambiguity for Investigators” on whether 
genetic data should be considered identifiable. The 2011 ANPRM acknowledged that 
“there is an increasing belief that what constitutes ‘identifiable’ and ‘de-identified’ data is 
fluid” and that evolving technologies and the increasing accessibility of data could allow 
de-identified data to become re-identified.  While a full rule-making process did not 

46

occur, recent re-identification research highlights this concern and challenges our current 
assumptions about the effectiveness of de-identification of genetic data as a reliable 
means of privacy protection.  

II. CHALLENGING DE-IDENTIFICATION OF GENETIC DATA 

While de-identification is used today as a broad and generally accepted standard for 
protecting health data, recent re-identification attacks on genetic data, whose personal 
data has been de-identified (described in detail below), are challenging the assumption 
that current de-identification techniques are sufficient to protect this type of data.  
 

43 National Human Genome Research Institute (NHGRI), ‘Privacy in Genomics’ 
<https://www.genome.gov/27561246/privacy-in-genomics/> accessed 17 April 2018. 
44 National Institute of Health, ‘Certificates of Confidentiality: Background Information’ 
<https://humansubjects.nih.gov/coc/background> accessed 17 April 2018. 
45 Amy L. McGuire, ‘Identifiability of DNA Data: The Need for Consistent Federal Policy’ (2008) 8 The 
American Journal of Bioethics: AJOB 75. 
46 Human Subject Research Protections: Enhancing Protections for Research Subjects and Reducing 
Burden, Delay, and Ambiguity for Investigators, 76 Federal Register 143 (2011). 
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Re-identification is the process by which an adversary attempts to discern the identities 
that have been removed from de-identified data.  Re-identification risk can be described 

47

as the measure of how likely it is that an adversary can determine the identity and other 
personal information of an individual from a de-identified dataset.   Re-identification of 

48

genetic data can be achieved in a variety of ways, including:   
49

  
(1) Matching the genetic data against a reference sample, which involves directly 

comparing someone’s genetic data to another set of genetic data from individuals 
who are from the same population as the original genetic sample. These two 
datasets can be used to confirm that two sets of genetic samples come from the 
same individual. The re-identification of such an individual will be dependent upon 
whether or not the reference sample data are personally identifiable. 

(2) Connecting genetic data to non-genetic databases, which involves deductively 
linking genetic data and associated personal data—such as age, gender, 
ethnicity—with other databases, such as publicly available criminal, census, 
genealogy, health, and voter databases.  

(3) Profiling from genetic data, which involves inferring physical traits and attributes from 
information encoded in the genome itself , such as gender, ethnicity, eye color, 
hair color, craniofacial characteristics, and height. These attributes can be 
combined to create a characterization of an individual, that by itself, may not lead 
to absolute identification, but if combined with other datasets, may lead to 
re-identification.  

 
These techniques for re-identification of genetic data have been demonstrated in a 
number of recent research projects. The first attempts at re-identification of genetic 
datasets were performed by Homer et al.  in 2008.  Researchers combined three 

50

datasets to identify an individual: a complex DNA mixture containing DNA from numerous 
individuals, a reference population, and the individual’s genotype. Even when an 
individual’s single nucleotide polymorphism (SNP) profile was aggregated with 1,000 or 
more other individuals, Homer et al.  demonstrated that the individual could still be 
identifiable. This research showed that individual membership can be determined in 
summary-level allele frequency data when compared against a reference dataset. It has 
been suggested that a genetic sequence containing 30-80 independent SNPs (a typical 
human genome sequence contains 3 million SNPs) can uniquely identify an individual,  

51

although today there is no scientific consensus on the minimum size of genetic sequence 
or number of SNPS necessary for re-identification. 
 

47 Simson Garfinkel (n 5). 
48 El Emam (n 23).  
49 William W. Lowrance and Francis S. Collins, ‘Identifiability in Genomic Research’ (2007) 317 Science 600. 
50 Nils Homer and others, ‘Resolving Individuals Contributing Trace Amounts of DNA to Highly Complex 
Mixtures Using High-Density SNP Genotyping Microarrays’ (2008) 4 PLOS Genetics e1000167.  
51 Zhen Lin, Art B. Owen and Russ B. Altman, ‘Genetics. Genomic Research and Human Subject Privacy’ 
(2004) 305 Science (New York, N.Y.) 183. http://science.sciencemag.org/content/305/5681/183.  
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In 2013, Gymrek et al.  re-identified 5 people from a DNA database without a reference 
database. This was done by analyzing the “1,000 Genomes” database, an anonymous, 
public DNA database  that only included individuals’ year of birth and state residence 

52

(which is acceptably de-identified within the existing HIPAA framework). Researchers 
identified 34-68 short tandem repeats on the Y chromosome (Y-STRs) in the genomes of 
10 individuals from the 1,000 Genomes database. Y-STRs distinguish male lines in 
families, as the Y chromosome is transmitted from father to son, as are surnames usually. 
After identifying the Y-STRs, they searched a publicly available genealogy database, 
which held 40,000 surnames and family pedigrees. After collecting those surnames and 
with state residence and birth year operating as indirect identifiers, the team queried 
other sources such as obituaries, genealogical websites, public demographic data, and 
internet record search engines for matches. From this cross-reference they were able to 
directly identify 5 of the 10 genomes and their complete pedigrees with high probability 
and to identify 50 related individuals from 10 genomes in the 1,000 Genomes Project.   

53

 
Another critical re-identification study published in the Public Library of Science (PLOS) 
Genetics in 2014 revealed that researchers could use the genome and computerized 
rendering software to “computationally predict” 3-D models of individual “faces” of 
particular genomes. Researchers analyzed 176 ancestry information markers (AIMs) to 
estimate individual genetic ancestry from DNA and map genes for genetically 
determined traits that vary between populations. Genetic ancestry through AIMs 
explained 9.6% of the total face variation. They also identified the sex of the individual, 
which explained 12.9% of the total face variation, and 76 single nucleotide 
polymorphisms (SNPs) located in 46 craniofacial candidate genes.  The combinations of 

54

genetic variations related to facial features create the predicted faces, which was 
mapped onto a face with 7,150 coordinates.  

55

 
Most recently in September 2017, Lippert et al. used physical information and genomic 
data obtained from whole-genome sequencing (WGS) to train a machine 
learning algorithm to identify people’s traits based on their SNPs associated with face 
shape, height, weight, hair color, and skin color, and to reconstruct what an individual’s 
face may look like .  Researchers reported that they could correctly re-identify individuals 

56

using the trait-predicted faces with a 74% accuracy rate. While Lippert et al. garnered 
much attention about the potential privacy implications that such a technique would 

52 ‘1000 Genomes | A Deep Catalog of Human Genetic Variation’ <http://www.internationalgenome.org/> 
accessed 13 April 2018.‘1000 Genomes | A Deep Catalog of Human Genetic Variation’ 
<http://www.internationalgenome.org/> accessed 13 April 2018. 
 
53 Melissa Gymrek and others, ‘Identifying Personal Genomes by Surname Inference’ (2013) 339 Science 
321.  
54 Other research on DNA-based facial modeling has been done with an even smaller set of SNPs (24): 
Peter Claes, Harold Hill and Mark D Shriver, ‘Toward DNA-Based Facial Composites: Preliminary Results 
and Validation’ (2014) 13 Forensic Science International: Genetics 208. 
55 Peter Claes and others, ‘Modeling 3D Facial Shape from DNA’ (2014) 10 PLOS Genetics e1004224.  
56 Christoph Lippert and others, ‘Identification of Individuals by Trait Prediction Using Whole-Genome 
Sequencing Data’ (2017) 114 Proceedings of the National Academy of Sciences 10166. 
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produce, the article also received a great deal of criticism from a number of authors 
claiming that the results reported were overstated, i.e., the algorithm analyzing the SNPs 
performed no better than an algorithm analyzing demographic values.  In addition to 

57

those listed above, other studies have also added to the growing consensus that genetic 
data are increasingly subject to re-identification through a variety of techniques.  In a 

58

2018 report, the authors’ note that over half of US individuals – approximately 60% in the 
case of individuals of European descent – could be identified using open genetic 
genealogy databases.  Although those findings do not depend on deidentification, they 59

showcase the propensity of genetic data to serve as a powerful identifier.  
 
These findings demonstrate that the re-identification of genetic data is possible, even 
when the accompanying personal data is aggregated or devoid of apparent identifiers as 
specified by the Safe Harbor Method, putting individual privacy at risk. While a reference 
sample for matching is currently required for successful re-identification and genetic data 
is still considered not readily identifiable, these studies demonstrate that re-identification 
from raw genetic data itself and from other indirect identifiers that the Safe Harbor 
Method does not require be removed may be possible in the near future. Other studies 
also suggest that the standard de-identification methods of suppression through the Safe 
Harbor Method and/or aggregation may not be well suited to raw genetic data, due to 
the complexity and uniqueness of such high-dimensional data.  

60

 
Together, the results of these studies have prompted many organizations to revisit their 
genetic data sharing policies and protocols. In 2008, the NIH and the Wellcome Trust 
Sanger Institute responded to the possibility of re-identification demonstrated by some of 
the studies mentioned (notably Homer et al.) by moving genetic summary results into 

57 For criticisms, see: Sara Reardon, ‘Geneticists Pan Paper That Claims to Predict a Person’s Face from 
Their DNA’ (2017) 549 Nature News 139; Yaniv Erlich, ‘Major Flaws in “Identification of Individuals by Trait 
Prediction Using Whole-Genome”’ [2017] bioRxiv 185330; Antonio Regalado, ‘Sorry, Your DNA Can’t Predict 
Exactly What You Look like (Yet)’ (MIT Technology Review) 
<https://www.technologyreview.com/s/608813/does-your-genome-predict-your-face-not-quite-yet/> 
accessed 21 November 2017; Peter Hess, ‘Why Science Turned on the DNA Tycoon Raising Fears About 
Genetic Privacy’ (Inverse, 4 October 2017) 
<https://www.inverse.com/article/36584-craig-venter-genome-dna-privacy-yaniv-erlich> accessed 21 
November 2017. 
58 Other notable re-identification research includes: (1) Latanya Sweeney, Akua Abu and Julia Winn, 
‘Identifying Participants in the Personal Genome Project by Name’ [2013] Available at SSRN 
<http://dataprivacylab.org/projects/pgp/1021-1.pdf> accessed 22 April 2014.; (2) Harmanci and Gerstein (n 
13).; (3) Hae Kyung Im and others, ‘On Sharing Quantitative Trait GWAS Results in an Era of Multiple-Omics 
Data and the Limits of Genomic Privacy’ (2012) 90 The American Journal of Human Genetics 591.; (4) Eric E 
Schadt, Sangsoon Woo and Ke Hao, ‘Bayesian Method to Predict Individual SNP Genotypes from Gene 
Expression Data’ (2012) 44 Nature Genetics 603.; and (5) Kevin B. Jacobs and others, ‘A New Statistic and 
Its Power to Infer Membership in a Genome-Wide Association Study Using Genotype Frequencies’ (2009) 
41 Nature genetics 1253. 
59 Erlich Y, Shor T, Pe'er I, Carmi S. See Identity Inference of Genomic Data using Long-Range Familial 
Searches. 6415, s.l. : Science, 2018, Vol. 362. 
60 Khaled El Emam, ‘Methods for the De-Identification of Electronic Health Records for Genomic Research’ 
(2011) 3 Genome Medicine 25. 
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controlled access portions of their data repositories, removing open web access to 
genetic datasets, and no longer publicly sharing aggregated, de-identified genetic data.   

61

 
However, in November of 2018, the NIH updated its policies for managing genetic 
summary results, announcing that it would now grant unrestricted access to genetic 
summary statistics for most NIH-funded studies.  Dr. Eric Green, Director of the Human 

62

Genome Research Institute, indicated that the decision to broaden access to genetic 
data was based on the continued publication of genetic summary results in scientific 
literature and aggregation of genetic data in public databases, as well as the continued 
absence of any reported, legitimate attempt at re-identification of de-identified study 
participants.   Millions of consumers have uploaded their DNA to direct-to-consumer 

63

genetic testing websites, and combining genomic data with genealogical data is being 
used to identify criminals based on sequencing biological data left behind at crime 
scenes. There has been increased pressure, especially since the arrest of the Golden 
State Killer to utilize genetic testing sites to achieve cold hits, and there have been at 
least four cold murder cases and one recent rape case solved through similar efforts.  64

However, as aforementioned, aggregated genetic data, including summary-level allele 
frequency data, still carries a theoretical risk of re-identification.  

65

 
Due to the potential re-identification both from the genetic data itself or from indirect 
identifiers that are not considered one of the 18 identifiers required to be removed by the 
Safe Harbor method, de-identification may pose a higher risk of disclosure for genetic 
data than currently believed. However, this does not necessarily mean that we should 
abandon de-identification entirely. As genetic datasets multiply, new methods of 
de-identification may be necessary to protect such high-risk data. Given how rapidly the 
landscape of re-identification risk is evolving for genetic data and the unique privacy 
implications that result, the path forward will require new technological solutions that 
protect the privacy of genomic data, while concurrently maintaining its analytic utility.  

61 Heeney and others (n 35). Heeney and others (n 36). Heeney and others (n 35). Heeney and others (n 
34). Heeney and others (n 35). Heeney and others (n 30).C Heeney and others, ‘Assessing the Privacy 
Risks of Data Sharing in Genomics’ (2011) 14 Public Health Genomics 17. 
62 ‘NOT-OD-19-023: Update to NIH Management of Genomic Summary Results Access’ 
<https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html> accessed 16 January 2019. 
63 ‘Protecting Participants, Empowering Researchers: Providing Access to Genomic Summary Results - 
Office of Science Policy’ <https://osp.od.nih.gov/2018/11/01/provide-access-gsr/> accessed 16 January 2019. 
64  Christi Guerinni et. al, Should Police Have Access to Genetic Genealogy Databases? Capturing the 
Golden State Killer and other Criminals Using the Controversial New Technique, PLOS BIOLOGY (Oct. 2, 
2018), 
<https://www.researchgate.net/publication/328038448_Should_police_have_access_to_genetic_genealo
gy_databases_Capturing_the_Golden_State_Killer_and_other_criminals_using_a_controversial_new_fore
nsic_technique>; See also Katelyn Ringrose, A Cautionary Note: Genealogy Companies Need to Stop 
Giving Warrantless DNA Clues to Law Enforcement, Penn State Law Review (2019), 
<http://www.pennstatelawreview.org/wp-content/uploads/2019/11/Ringrose-Penn-Statim-FormattedAdobe.p
df>. 
65 Homer and others (n 48). 
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III. TECHNICAL SOLUTIONS 

As genetic datasets and big data analytics tools continue to grow in quantity and 
sophistication,  breaches of medical data threaten to erode public confidence in the 

66

long-term security of personal information.  In order to counter these threats, many data 
67

processors are looking to employ privacy engineering solutions  to protect genetic data 
68

and promote data sharing.  While not all technical solutions will necessarily be 
69

applicable to genetic data,  many hold great promise. In this section, we will consider 
70

two prominent examples: differential privacy and secure computation. 
 

Differential Privacy 

Differential privacy is a mathematical concept that allows researchers to measure 
whether they can derive conclusions from a dataset while being unable to determine 
whether or not those conclusions are based on any individual’s personal data.  The basic 

71

idea of differential privacy is that “the risk to one’s privacy…should not substantially 
increase as a result of participating in a statistical database.”  Differential privacy 

72

requires that the answer to any query be “probabilistically indistinguishable” from the 
original data with any one specific individual removed—i.e., a differentially private 

66 Vivien Marx, ‘Biology: The Big Challenges of Big Data’ (2013) 498 Nature 255. 
67 Dan Mangan, ‘Health Data Breaches: What Do You Have to Lose?’ CNBC (9 March 2016) 
<http://www.cnbc.com/2016/03/09/as-health-data-breaches-increase-what-do-you-have-to-lose.html> 
accessed 7 April 2016. 
68 See An Introduction to Privacy Engineering and Risk Management in Federal Systems, NIST, (Privacy 
engineering, according to NIST, means, “a specialty discipline of systems engineering focused on 
achieving freedom from conditions that can create problems for individuals with unacceptable 
consequences that arise from the system as it processes PII.”) 
<https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8062.pdf>.  
69 Robinson, Jill O., et al. (n.6); See, for example, DNATX,< https://www.dnatix.com/faq/> accessed 23 
September 2019.  
70 For example, blockchain technology, involving cryptographically secure distributed ledgers, has received 
great attention in recent years for its ability to allow permission-less, or "trust-less" exchanges of 
non-personal data or goods. However, some aspects of blockchain – e.g. the permanent, public, and 
de-centralized nature of data storage – may not be appropriate for data that is very personal, challenging 
to de-identify with confidence, or requiring accountability, credentialing, and oversight. As a result, 
blockchain technologies are not appropriate for genomic data. Additionally, blockchain applications remain 
mostly theoretical in the medical sector today. It remains to be seen whether future iterations of blockchain 
(e.g. “third generation” or “synchronous ledger technologies”) may be useful for future solutions. See: 
Steve Wilson, ‘Blockchain, Healthcare and Bleeding Edge R&D’ (Constellation Research Inc., 10 October 
2016) <https://www.constellationr.com/blog-news/blockchain-healthcare-and-leading-edge-rd> accessed 5 
January 2018; & Stephen Wilson and David Chou, ‘How Healthy Is Blockchain Technology?’ [2017] HIMSS 
AsiaPac17, Singapore. 
71 Salinger Privacy (n 19). 
72 Cynthia Dwork, ‘Differential Privacy’ in Michele Bugliesi and others (eds), Automata, Languages and 
Programming, vol 4052 (Springer Berlin Heidelberg 2006) 
<http://www.springerlink.com/content/383p21xk13841688/> accessed 23 December 2011.  
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computation provides a randomized output that follows an almost identical probability 
distribution to the original with any one individual removed—meaning that the answer 
assumes that even if an adversary knows all the records except one in a dataset, the 
adversary still could not infer the information in the unknown record.  Differentially 

73

private solutions typically involve data perturbation to reach such conclusions. Although 
privacy laws and regulations concern themselves with identity disclosure, differential 
privacy also protects against learning something new about data subjects through 
attributes assigned to or inferred about them.   

74

 
How close the randomized output is to the original is determined by a privacy parameter 

. Lower values of  (“epsilon”) imply stronger privacy guarantees, because moreε > 0 ε  
noise is added, making it more difficult to distinguish an individual’s contribution to the 
dataset; higher values of  imply weaker privacy guarantees. The appeal of differentialε  
privacy is the theoretical formulation on which it is based, allowing for formal, 
mathematical proofs of privacy protection or loss. The practical challenge with differential 
privacy is determining an appropriate parameter  that will provide sufficiently lowε  
privacy risk and sufficiently useful and reliable data.  As there currently is no 

75

probabilistic measure of risk or a risk-based framework incorporating contextual 
parameters for , it is difficult to know how  will meaningfully fit with current standardsε ε  
and guidelines. 
 
Although an active area of research, there have been few real-world implementations of 
differentially private genomic data, and thus few examples of useful, valid, and safe 
results on which we can rely as use cases or examples. One example of how differential 
privacy is applied today is Google’s Chrome browser, which collects user statistics (which 
users have opted-in to share) using differentially private randomized responses.  

76

Another is a US Census Bureau application using synthetic data that plots a modified 
form of differentially private worker commute patterns.  Apple has also developed an 

77

opt-in differential privacy technique for macOS and iOS 10 users to gain insights into user 

73 Tianqing Zhu, Differential Privacy and Applications, vol 69 (1st edn, Springer 2017) 
<//www.springer.com/gp/book/9783319620022> accessed 5 January 2018.  
74 John M. Abowd and Lars Vilhuber, ‘How Protective Are Synthetic Data?’ in Josep Domingo-Ferrer and 
Yücel Saygın (eds), Privacy in Statistical Databases (Springer Berlin Heidelberg 2008) 
<http://link.springer.com/chapter/10.1007/978-3-540-87471-3_20> accessed 18 January 2016.; Josep 
Domingo-Ferrer and Jordi Soria-Comas, ‘From T-Closeness to Differential Privacy and Vice Versa in Data 
Anonymization’ (2015) 74 Knowledge-Based Systems 151. 
75 F. Dankar and K. El Emam, ‘Practicing Differential Privacy in Health Care: A Review’ (2013) 5 Transactions 
on Data Privacy 35; Chris Clifton and Tamir Tassa, ‘On Syntactic Anonymity and Differential Privacy’ (2013) 
6 Trans. Data Privacy 161. http://www.tdp.cat/issues11/tdp.a124a13.pdf.  
76 Úlfar Erlingsson, Vasyl Pihur and Aleksandra Korolova, ‘RAPPOR: Randomized Aggregatable 
Privacy-Preserving Ordinal Response’, Proceedings of the 2014 ACM SIGSAC Conference on Computer 
and Communications Security (ACM 2014) <http://doi.acm.org/10.1145/2660267.2660348> accessed 18 
January 2016. 
77 A. Machanavajjhala and others, ‘Privacy: Theory Meets Practice on the Map’, IEEE 24th International 
Conference on Data Engineering, 2008. ICDE 2008 (2008). 
http://www.cse.psu.edu/~duk17/papers/PrivacyOnTheMap.pdf 
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habits by employing differential privacy locally on the users’ device before transmitting 
the data to Apple over an encrypted channel.   

78

 
While differential privacy may be a promising solution, it poses some challenges for 
genetic data. In applying differential privacy to protect against both identity and attribute 
disclosure, the data or results may be overly perturbed when applied to raw genetic data,

 which can potentially weaken the usefulness of the data and blur the line between 
79

disease and health if done improperly.  Further, perturbation of genetic data can lead to 
80

a lack of trust as it is not possible to guarantee that nonsense data will not be outputted. 
Distorted genetic data that is outputted could thwart research results or even lead to 
misdiagnosis, as minute changes in nucleotide bases can lead to critical errors in gene 
analysis. Troublingly, a study incorporating genetic data considered the impact of using 
differentially private pharmacogenetics models to guide personalized warfarin dosing, 
based on genetic data and medical history, and found that there would be worse clinical 
outcomes for a significant number of patients in simulated clinical trials.  

81

 
Another challenge is that genetic data would need to be held in extremely large files with 
considerable amounts of noise, making it difficult to deploy efficient and scalable 
differential privacy protections. It also has been argued that the main factor of differential 
privacy, , cannot be strictly defined to a specific value for all purposes. The  valueε ε  
represents a tradeoff between privacy and utility that would need to be determined by 
statistical experts on a case-by-case basis, given a variety of contextual factors (such as 
data type, research purpose, etc.). Further, it could be difficult to describe the context of 
differential privacy and how the process would enable the secure disclosure of their 
genetic data to research participants and patients who are considering providing an 
informed consent to share their data. These issues point to its current impracticality with 
genetic data. 
 

Secure (Multi-Party) Computation 

Secure (multi-party) computation is a type of cryptography allowing multiple parties, who 
want to pool data and compute a function without inter-party disclosures, to collaborate 
on fully encrypted data. The technique is theoretically thought of as the equivalent of 
sending encrypted data to a trusted third-party who would return the desired result 
without the need to decrypt the data, guaranteeing minimal information leakage. The 

78 Apple Inc., ‘Apple Differential Privacy Technical Overview’ 
<https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf>. 
79 Zaobo He, Yingshu Li and Jinbao Wang, ‘Differential Privacy Preserving Genomic Data Releasing via 
Factor Graph’, Bioinformatics Research and Applications (Springer, Cham 2017) 
<https://link.springer.com/chapter/10.1007/978-3-319-59575-7_33> accessed 12 December 2017. 
80 Lowrance and Collins (n 47).  
81 Matthew Fredrikson and others, ‘Privacy in Pharmacogenetics: An End-to-End Case Study of 
Personalized Warfarin Dosing’ (2014) 
<https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/fredrikson_matthew
> accessed 18 January 2016. 
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cryptographic primitives, or building blocks, to create secure computation protocols can 
come from a variety of techniques– including homomorphic encryption, garbled circuits, 
secret sharing, or others.  
 
With appropriate contractual obligations and measures to ensure there are no leakages 
of personal information from the computational results themselves,  secure computation 

82

can be thought of in a risk-based framework as protected pseudonymous data  with a 
83

low risk of re-identification.  Secure computation is consistent with guidance provided 
84

by regulators as a means to protect personal health information while sharing encrypted 
data for the purposes of collaborative analysis. 
 
There are very few real-world examples of secure computation, let alone in genetics. 
Linking for database matching or deduplication without sharing sensitive or personal 
information, known as secure linking,  is used by the Institute for Clinical Evaluative 

85

Sciences (ICES) for linking de-identified data (matching on insurance number, name, and 
date of birth) and was proposed for a human papillomavirus (HPV) vaccine initiative 
impact assessment.  Using a secure data collection system, which provided strong 

86

privacy and confidentiality assurances, a point prevalence study was conducted in 2014 
to assess rates of antimicrobial resistant organisms (ARO) in long-term care homes in 
Ontario.  Another 2015 study in Estonia was conducted by linking a tax database and 

87

higher-education database to assess correlations between graduation from higher 
education and employment during that study period using secure computation.  

88

 
One notable pilot study from 2016 used secure computation in genetics for DNA-based 
prediction of HIV-related outcomes.  This study demonstrated some interesting points 

89

related to real-world use and interpretation of genetic data. Some variants provide clear, 
nearly deterministic results, whereas others are used in combination to determine 
genetic risk scores. In order to be useful, the authors found that it was necessary to 

82 Christine O’Keefe and James Chipperfield, ‘A Summary of Attack Methods and Confidentiality Protection 
Measures for Fully Automated Remote Analysis Systems’ (2013) 81 426.  
83 Pseudonymization is defined as a “specific kind of transformation in which the names and other 
information that directly identifies an individual are replaced with pseudonyms. Pseudonymization allows 
linking information belonging to an individual across multiple data records or information systems, provided 
that all direct identifiers are systematically pseudonymized.” See: Simson Garfinkel (n 5). 
84 Luk Arbuckle and Khaled El Emam, ‘Practical Applications of Secure Computation for Disclosure Control’, 
Proceedings of Statistics Canada Symposium (2016). 
85 Khaled El Emam and Luk Arbuckle, Anonymizing Health Data: Case Studies and Methods to Get You 
Started (O’Reilly 2013) ch Secure Linking.” 
86 K. El Emam and others, ‘A Protocol for the Secure Linking of Registries for HPV Surveillance’ (2012) 7 
PLoS ONE.  
87 Khaled El Emam and others, ‘Secure Surveillance of Antimicrobial Resistant Organism Colonization or 
Infection in Ontario Long Term Care Homes’ (2014) 9 PLoS ONE e93285.  
88 Dan Bogdanov and others, ‘Students and Taxes: A Privacy-Preserving Social Study Using Secure 
Computation’, Cryptology ePrint Archive (2015). 
89 Paul J. McLaren and others, ‘Privacy-Preserving Genomic Testing in the Clinic: A Model Using HIV 
Treatment’ [2016] Genetics in Medicine 
<http://www.nature.com/gim/journal/vaop/ncurrent/full/gim2015167a.html> accessed 11 February 2016. 
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accommodate both types of tests. Also, as interpreting genotyping results requires 
specific knowledge and training, the authors not only sought to extract relevant test data 
securely, but to provide meaningful reports to clinicians.  
 
In 2017, a secure computation was performed on genomic data held in the cloud by a 
group of researchers at Stanford University in 2017.  Using a cryptographic “genome 

90

cloaking” technique, researchers were able to determine which patients at two medical 
centers with similar symptoms shared gene mutations and identify which gene mutation 
was responsible for four rare diseases, among other accomplishments. These analyses 
were done while keeping more than 97% of the genetic data completely encrypted.   
 
Duality Technologies, a leading provider of privacy enhancing technologies, is currently 
attempting to further mature homomorphic encryption, the process by which data may be 
analyzed without the need for decryption.  While Duality initially focused on business 

91

transactions, their solutions scale linearly and could practically support millions of SNPs. 
In 2018, Duality co-won the iDash competition, an NIH funded event, for fastest 
computations on genetic  data. Duality’s run time on this challenge was 0.09 minutes 
leveraging 1.5GB of memory. For comparison, fellow competitor IBM ran for 23 minutes 
leveraging 8.6GB of memory.  Innovation in the arena of homomorphic encryption could 

92

potentially allow for deployment on cloud-based computing clusters, delivering low-cost, 
large-scale, and privacy-focused solutions.   
 
IQVIA, a prominent health research company, launched E360 Genomics in 2019, a 
patented platform that allows clients to access aggregated data for research purposes.  

93

IQVIA’s techniques allow for the removal of phenotypic data while retaining genotypic 
information, as a methodology for protecting patient privacy while still allowing for great 
utility in the data itself.  IQVIA’s process tokenizes patient level genetic  variants 

94

consistently across all data sets, which preserves the data values and enables statistical 
analysis to be done on the tokens rather than the information itself. After analysis, variant 
tokens of interest can be de-tokenized for downstream analysis. While IQVIA’s market is 
for research applications, the same tokenization technology could be applied to clinical 
applications.  
 
However, while secure multi-party computation is advancing rapidly with more efficient 
and scalable methods,  as well as specialized hardware to accelerate computations,  

95 96

90 Karthik A. Jagadeesh and others, ‘Deriving Genomic Diagnoses without Revealing Patient Genomes’ 
(2017) 357 Science 692. 
91 See Duality Technologies generally <https://duality.cloud/about-us/> accessed 24 September 2019.  
92 See iDash Competition Announcement 
<https://duality.cloud/duality-wins-idash-competition-fastest-computations-genomic-data/> accessed 24 
September 2019.  
93 See IQVIA generally <https://www.iqvia.com/> accessed September 24 2019.  
94 See IQVIA’s E360 Genomics Launch 
<https://www.iqvia.com/newsroom/2019/03/iqvia-launches-e360-genomics> accessed September 24 2019.  
95 Kurt Rohloff and David Bruce Cousins, ‘A Scalable Implementation of Fully Homomorphic Encryption Built 
on NTRU’ in Rainer Böhme and others (eds), Financial Cryptography and Data Security (Springer Berlin 
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current techniques are still difficult to implement and require longer computation times 
than conventional methods, which poses practical concerns for its applicability in 
genetics. As sharing of genetic data is needed for quick and accurate research, 
diagnosis, and treatment, adding friction to the sharing process through secure 
computation could slow down progress. Further, the storage of encrypted data requires a 
tremendous amount of memory, which can be extremely costly (a single sequenced 
human genome can require up to 300GB of storage).  

IV. A PRACTICAL PATH FORWARD 

Although differential privacy and secure multi-party computation show promise for 
protecting genetic data, the current applicability of these technologies is not yet fully 
developed. While these privacy tools may provide protections for genetic data that 
de-identification of the accompanying personal data cannot, they have costs, both in 
decreased data utility and added resource burdens, limiting their scalability at the 
present time. Further, as the amount of genetic data increases exponentially, adding the 
technical burden of these methods could ultimately slow or inhibit sharing and usage of 
genetic data.  
 
While advanced technical solutions to the privacy risks posed by genetic data remain 
mainly in the research and development stage, in practice, organizations are currently 
focusing on privacy policies and data practices that outline privacy controls for genetic 
data (including, but not limited to de-identification), while treating genetic data as not 
readily identifiable. Leading organizations—such as the NIH,  International Cancer 

97

Genome Consortium (ICGC),  Wellcome Trust Sanger Institute,  UK BioBank,  and The 
98 99 100

Heidelberg 2014) <http://link.springer.com/chapter/10.1007/978-3-662-44774-1_18> accessed 27 October 
2015. ibid.  
96 David Cousins and others, ‘SIPHER: Scalable Implementation of Primitives for Homomorphic Encryption’ 
(Raytheon BBN Technologies 2015) Final Technical Report AFRL-RI-RS-TR-2015-252. 
http://www.dtic.mil/dtic/tr/fulltext/u2/a624640.pdf. 
97 The NIH funds a large amount of the health research conducted in the US, including genomic research. 
Researchers funded by the NIH are obligated through their funding agreements to share their data for 
secondary research purposes (See: National Institutes of Health, ‘FINAL NIH STATEMENT ON SHARING 
RESEARCH DATA’ (2003) <http://grants.nih.gov/grants/guide/notice-files/NOT-OD-03-032.html>.). In order 
to protect the privacy of research subjects, the NIH has developed a comprehensive set of policies and 
procedures around genomic data sharing as outlined in their widely known Genomic Data Sharing Policy 
(GDS). See: National Institutes of Health, ‘NIH Genomic Data Sharing (GDS) Policy’ 
<https://gds.nih.gov/03policy2.html>.4/1/19 10:07:00 AM 
98 ICGC was launched in 2008 to coordinate a large number of cancer genome studies taking place around 
the world with an aim to gain a more complete understanding of the genomic changes related to individual 
cancers. ICGC shares genomic data with researchers for secondary studies in order to maximize the 
benefit to the public and to increase efficiency and productivity in research. See: International Cancer 
Genome Consortium, ‘ICGC Goals, Structure, Policies and Guidelines’ 
<https://icgc.org/icgc/goals-structure-policies-guidelines> accessed 6 April 2016. 
99 The Wellcome Trust is a charity in the UK which funds medical research. They are a leading advocate for 
open access to research data and organizers of the Fort Lauderdale meeting in January 2003 which 
solidified the research community’s commitment to rapid release of genomic data. See: The Wellcome 
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Cancer Genome Atlas (TCGA) —also highlight that de-identification practices of the 
101

accompanying personal data should not be used alone, but rather combined with a 
comprehensive privacy program and governance mechanisms. These governance 
mechanisms include access controls, data use agreements, and strong security protocols 
throughout the information management lifecycle that minimize the risk of 
re-identification of genetic data. Although there is some variability across organizations in 
the details of their privacy policies and how they have been structured, the strong 
similarities between them demonstrate a convergence of norms (see chart 1 of the 
Appendix for more details):  
 

1. Access Controls : Access to genetic data is tiered depending upon the nature of 
the data and accompanying risk of re-identification. Data placed in open access 
repositories or on the web is publicly available without restriction, but the majority 
of such data is shared in aggregate or summary form, not at an individual level. 
Data in controlled access repositories is typically restricted to research use only, 
with research requests pre-approved by the organization prior to access being 
granted. Access to and use of controlled access data is subject to reviews by a 
governing body, such as a Data Access Committee.  Such reviews assess the 

102

requests for merit and/or conformity to any use limitations attached to the data. 
Governing bodies may provide authenticated users with broad access to the 
controlled access data or grant access to specific controlled access data sets 
based on the details of the proposed research (on a study-by-study basis).   

 
2. Contractual Controls: Once approved for use of controlled access data, 

investigators and their institutions are required to enter into a data use agreement 
prior to data access being granted to ensure that data is accessed only for 
legitimate purposes and to help mitigate future re-identification risks. These 

Trust, ‘Sharing Data from Large-Scale Biological Research Projects: A System of Tripartite Responsibility’ 
<https://cancergenome.nih.gov/abouttcga/policies/wellcome-trust-fort-lauderdale-principles> accessed 9 
November 2017.; The Wellcome Trust Sanger Institute (WTSI), dedicated specifically to genomic research, 
has produced guidelines pertaining to the sharing of genomic data generated in their research projects. 
Access, ethical considerations, rights of data providers, and optimizing translation are the key principles 
that underlie the guidelines. See: Wellcome Trust Sanger Institute, ‘Data Sharing Policy and Guidelines’ 
<http://www.sanger.ac.uk/sites/default/files/Jul2017/Data_Sharing_Policy_and_Guidelines_July_2017_0.pd
f> accessed 20 November 2017. 
100 UK Biobank is a project, funded in part by the Wellcome Trust, which recruited 500,000 people in the 
UK to provide samples and detailed health information, and agree to have their health followed over time. 
The Biobank is designed to be a resource for researchers to study disease etiology.   
See: ‘About UK Biobank’ (UK Biobank) <http://www.ukbiobank.ac.uk/about-biobank-uk/> accessed 13 
December 2017. 
101 The Cancer Genome Atlas is a joint effort of the US National Cancer Institute (NCI) and the National 
Human Genome Research Institute (NHGRI) to map critical genomic changes found in different types of 
cancer. The TCGA is committed to open sharing of their data with researchers with an aim to improve 
diagnosis and treatment of the disease. See: ‘About TCGA’ (The Cancer Genome Atlas - National Cancer 
Institute) <https://cancergenome.nih.gov/abouttcga> accessed 13 December 2017. 
102 ‘NIH GDS Policy Oversight’ (Office of Science Policy) 
<https://osp.od.nih.gov/scientific-sharing/policy-oversight/> accessed 16 January 2019. 
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agreements outline the appropriate uses of the data and the obligations of 
investigators, including the following provisions: restrictions on the re-distribution 
of the data; regular reviews and/or renewal of access authorizations; prohibition of 
attempts to re-identify the data and from contacting data subjects, and 
requirements to destroy data upon study completion. Data use agreements may 
create additional obligations in accordance with the terms of consent given by 
research participants, the characteristics of the particular data being accessed, 
and/or other institutional policies and procedures. 

 
3. Security Protocols : Investigators using data in open access repositories and 

approved users of controlled-access data adhere to the security protocols 
specified by the respective organizations sharing genetic data. All organizations 
note that local storage is more secure than cloud storage of sensitive data, 
although there are risks associated with data stored on local management 
systems. The organizations variously address these risks by requiring the 
implementation of both physical and electronic security methods on devices, such 
as providing user training, restricting access to authenticated users, and 
encrypting data. 

 
The trend to provide additional safeguards for genetic data also is increasingly 
recognized by entities that are not subject to the HIPAA Privacy Rule, such as consumer 
genetic testing companies (commonly referred to as direct-to-consumer genetic testing 
companies), which are recognizing de-identification challenges and taking proactive 
steps to reduce re-identification risk. Although consumer genetic testing companies are 
not covered entities or business associates, many nevertheless have committed to 
requiring safeguards in addition to de-identification of accompanying personal data, 
including limits on sharing without consent unless there are strong assurances that the 
data is not identifiable and protected from re-identification.  Further, rather than relying 

103

exclusively on technical solutions that may significantly reduce a dataset’s utility for 
research or other secondary analysis, complementing less severe technical controls with 
legal and administrative safeguards, such as an ethical review process,  also can help 

104

103 See: Future of Privacy Forum, ‘Privacy Best Practices for Consumer Genetic Testing Services’ 
<https://fpf.org/wp-content/uploads/2018/07/Privacy-Best-Practices-for-Consumer-Genetic-Testing-Services
-FINAL.pdf>.; The Best Practices recognize that due to the unique nature and sensitivity of genetic 
data, today's current de-identification techniques for genetic data alone cannot be represented as strongly 
protecting individuals from re-identification. It also recognizes that for genetic data, de-identification 
requires particular care given challenges of de-id this type of data. In light of this, the Best Practices 
requires that the de-identification measures taken establish strong assurance that the data is not 
identifiable and protected from re-identification. The Best Practices recognizes that this can be 
accomplished through de-identification in addition to the use of strong security protocols, encryption, 
contractual restrictions on sharing and use, and retention separate from or without matching datasets. 
104 An ethical review process (also referred to as a corporate IRB, Consumer subject review board, or 
corporate ethics boards) has been proposed for the ethical review for data that is not typically covered by 
the Common Rule. The purpose of these reviews is to identify both the risks and the benefits of the 
research and to balance the prospective risks to the Consumer, prospective benefits to Consumers or to 
the public, the rights and interests of the Consumer, and the legitimate interests of the company. See: Ryan 
Calo, ‘Consumer Subject Review Boards: A Thought Experiment’ (2013) 66 Stanford Law Review Online 97.; 
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maintain a balance between preserving the data’s value and protecting individual 
privacy. 

CONCLUSION 

The field of human genetics is evolving rapidly. While this evolution is advancing 
biomedical science and informatics, it is also raising serious privacy concerns. As entities 
such as hospitals, research organizations, corporations, government agencies, and 
biobanks continue to publish “de-identified” genetic data (i.e. genetic data where the 
accompanying personal data has been de-identified), balancing genetic data sharing with 
privacy will become a challenge that we cannot ignore. While de-identification of the 
personal data that accompanies genetic data has been the most common practice for 
protecting genetic data, de-identification is a moving-target—data that could not be 
linked back to an individual at the time of its release could become identifiable over time, 
as new datasets and new re-identification techniques become available.  
 
The combination of genetic data proliferation, its inherent identifiability, and 
advancements in the statistical and technological methods for re-identification indicate 
that methods like the HIPAA Safe Harbor Method may not be sufficient to protect privacy. 
Re-identification of genetic data may be more readily available than we think, and risk of 
re-identification may be larger than we currently consider. In light of recent 
re-identification studies, it is becoming increasingly difficult to maintain the stance that 
genetic data by itself and without accompanying personal data is not readily identifiable 
and that de-identification  of that data alone is sufficient to ensure that genetic data won’t 
be re-identified. Further , de-identification of accompanying personal data is only one of 
many tools to safeguard genetic data— and while it is an important piece of an overall 
privacy program, de-identification alone may not be a sufficient answer to protect the 
privacy of genetic data.  
 
Given the rapidly evolving re-identification landscape for genetic data and the unique 
privacy implications that it creates, we must continue to research and develop new 
technical solutions. Differential privacy and secure computation promise novel solutions 
to the problem of how to safeguard genetic information and reduce the re-identification 
risk it poses to individuals. However, as it stands, neither of these solutions have been 
used much, if at all, in practice. As privacy norms in the space of genetic data sharing 
evolve, along with advances in genetics and the availability of tools to interpret and 
re-identify genetic data, technical privacy protections will need to advance beyond the 
lab and into practice.  
 
While we await those technical developments, strong governance mechanisms are 
needed to lay the path forward for privacy-protective genetic data sharing. As leading 
genetic-data-sharing organizations’ privacy and data protection policies demonstrate, 

‘“Beyond IRBs: Ethical Guidelines for Data Research” by Omer Tene and Jules Polonetsky’ 
<https://scholarlycommons.law.wlu.edu/wlulr-online/vol72/iss3/7/> accessed 17 October 2018. 
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there appears to be a common consensus - non-public access to genetic sequences is 
unlikely to lead to the re-identification of individuals when: (1) the data is protected by 
appropriate access controls, data use agreements, and strong security protocols; and (2) 
accompanying personal data is de-identified. Through rigorous technical, legal, and 
organizational controls in addition to de-identification of personally identifying 
information accompanying genetic data, re-identification risk can be lowered to a degree 
that permits reasonable sharing of genomic data. 
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Appendix 

Chart 1: Comparison of Genetic Data Sharing Policies from Leading Organizations 
 

Organization / 
Policy  

De-identification  
105

Access Controls   Data Use Agreements  Security Protocol 

The National 
Institutes of 
Health (NIH) 
 
Genomic Data 
Sharing Policy

 
106

Investigators should 
de-identify human 
genomic data prior 
to submitting it to 
NIH-designated data 
repositories, in 
accordance with 
both the HHS 
Regulations for 
Protection of Human 
Subjects and the 
HIPAA Privacy Rule. 
 
The term de-identify, 
as it is being used in 
the NIH GDS policy, 
refers to removing 
information that 
could be used to 
associate a dataset 
or record with a 
human individual.  

107

 
The GDS policy 
refers to removing 
“identifiers” that 
could lead to 
disclosure, 
suggesting that the 
NIH currently 
considers genomic 

Data submitted to 
NIH-designated data 
repositories is available 
for secondary research 
use through either 
unrestricted (available to 
the public at large) or 
controlled access 
(available only for 
particular projects by 
investigators approved 
and monitored by Data 
Access Committees 
(DACs)). 
 
Data is generally 
unrestricted only if 
collected under 
informed consent for 
future research use and 
broad data sharing. 
However, for 
“compelling scientific 
reasons,” the NIH may 
allow unrestricted use of 
genomic data collected 
without such consent. 
 
Controlled-access 
datasets are defined by 
the data use limitations 
established by the 

Approved users of 
controlled-access data 
are encouraged to 
obtain a CoC as a 
precaution against the 
re-identification of 
de-identified data. CoCs 
prohibit the disclosure 
of identifiable, sensitive 
information about 
subjects to those not 
connected to the 
research.  

108

 
For unrestricted data, 
investigators should not 
attempt to identify 
individual participants 
from whom the data 
was obtained. 
 
In addition, all 
investigators must sign 
a Data Use Certification, 
which stipulates 
additional limitations on 
the use of data, 
including: 
(1) Using the data only 
for the approved 
research 

Approved users of 
controlled-access data 
should adhere to best 
practices for security. 
Such recommended 
practices for investigators 
include consulting with 
their institutions’ 
respective IT officers to 
develop a security plan 
prior to receiving the 
restricted data, 
implementing physical 
and electronic security 
measures on devices, 
training users, and taking 
additional measures for 
the use of cloud 
computing.  

109

105 Note that the terms “de-identification” and “anonymization” are used interchangeably in this discussion 
as the North American organizations included favor the former term and the European organizations the 
latter.   
106 National Institutes of Health, ‘NIH Genomic Data Sharing (GDS) Policy’ (n 88). 
107 We assume that the term “de-identify,” as used in policies other than NIH GDS policy, is meant to be 
applied to any clinical or identifying personal data accompanying the genomic data (such as names, 
identification numbers, and other personal information) and not the genomic data itself as no standard 
de-identification methods exist for genomic data at this time.  
108 National Institute of Health (n 42). 
109 National Institutes of Health, ‘NIH Security Best Practices for Controlled-Access Data Subject to the NIH 
Genomic Data Sharing (GDS) Policy’ 
<https://www.ncbi.nlm.nih.gov/projects/gap/pdf/dbgap_2b_security_procedures.pdf>. 
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data not to be 
identifying.  
 
However, the NIH 
has obtained a 
Certificate of 
Confidentiality (CoC) 
for its database of 
genotypes and 
phenotypes (dbGaP) 
and encourages 
investigators 
submitting large 
genomic datasets to 
do the same 
because “genomic 
data can be 
re-identified.” 

institution submitting the 
data.  
A DAC’s decision to 
approve access is based 
on whether the 
proposed use of data 
conforms to the data use 
agreement of the 
submitting institution. 

(2) Not selling any data 
or sharing it with 
individuals not listed in 
the data access request 
(3) Agreeing to report 
any violation of GDS 
policy to the DAC once 
discovered 

International 
Cancer 
Genome 
Consortium 
(ICGC) 
 
ICGC Goals, 
Structure, 
Policies & 
Guidelines  

110

ICGC policy 
recognizes the 
possibility that 
de-identified 
genomic data can 
be indirectly 
re-identified, if 
similar data from the 
individual were 
obtained from a 
third-party database 
containing sufficient 
demographic or 
healthcare 
information. 
 
Open access data is 
said to be 
“permanently 
de-identified,” 
although the policy 
does not specify 
exactly what data is 
to be de-identified 
or how. According 
to the ICGC access 
policy, the 
open-access data 
has been carefully 
considered and will 
be monitored to 
ensure it cannot 
presently be used to 

Like the NIH, the ICGC 
distinguishes between 
open and 
controlled-access 
datasets. 
 
Open access datasets 
are accessible to the 
public and monitored to 
ensure that they cannot 
be aggregated to create 
a dataset unique to an 
individual without 
“reasonable efforts.” 
They contain 
demographic 
information, clinical data 
such as vitals and 
disease status, and 
normalized data on gene 
expression. 
 
Controlled-access 
datasets contain data 
unique to individuals not 
directly identified, and 
may include raw genetic 
data, including 
probe-level data on 
gene expression and 
whole genome 
sequence files.  
 

Investigators seeking 
access to open datasets 
must submit Assurance 
Agreement forms that 
include: 
(1) a written description 
of the purpose of the 
research to be done; 
and 
(2) an agreement to not 
try to identify or contact 
the donor subjects. 
 
In addition to the 
provisions above, 
investigators seeking 
access to controlled 
datasets must submit 
Assurance Agreement 
forms agreeing: 
(1) not to redistribute the 
datasets;  
(2) to destroy the 
datasets upon 
termination of their use; 
and 
(3) to protect patient 
confidentiality. 
 
However, individual 
data producers will be 
responsible for the 
protection of 

The ICGC requires the 
establishment and use of 
a Data Coordination 
Center (DCC), which 
manages the integration 
and distribution of data 
submitted by ICGC 
participants and performs 
high-level quality control 
checks on the data. The 
system restricts access to 
protected data to 
authenticated and 
authorized investigators. 
 
The Center utilizes local 
franchise databases, 
which contain 
locally-stored information 
relating to a specific 
research project. The 
information is periodically 
stored in a public 
repository, a coordination 
backend that hosts all of 
the ICGC data and creates 
a uniform model to be 
used by researchers with 
access to the DCC. 

110 International Cancer Genome Consortium (n 89). 
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generate a dataset 
unique to an 
individual without 
reasonable efforts. 
 

The Data Access 
Compliance Office 
(DACO) processes 
requests for the use of 
controlled-access data in 
particular research 
projects. Projects must 
comply with ICGC 
policies developed by 
the International Data 
Access Committee 
(IDAC).  

confidential information 
they submit. 

Wellcome 
Trust Sanger 
Institute 
(WTSI) 
 
Data Sharing 
Policy and 
Guidelines; 
Human Data 
Security 
Policy  

111

Researchers 
applying for funding 
should incorporate 
anonymization 
procedures into the 
design of a study in 
order to ensure the 
privacy of subjects 
is properly 
safeguarded. 
 
WTSI stipulates that 
research data sets 
should be 
pseudonymized or 
fully anonymized in 
all but exceptional 
circumstances. 
Anonymization in 
this instance refers 
to the removal of 
“information which 
allows identification 
of an individual” 
from clinical or other 
accompanying data.  
 
WTSI provides some 
guidelines for 
anonymizing data, 
such as removing all 
but the first three 
digits of postal 
codes, generalizing 

Projects involving 
genetic data must be 
assigned one of four 
data security levels. The 
requirements of each 
level are cumulative.  
 
Level 1 (“Open”) – 
participants have given 
informed consent to 
make their data publicly 
available without 
restriction, OR data has 
already been publicly 
disclosed or could be.  
 
Level 2 (“Standard”) –  
Data should typically be 
linked only to general 
demographic or 
phenotypic data and 
should be drawn from a 
relatively large 
population. Data may be 
transmitted between 
members of the access 
control group through a 
private channel (e.g., 
USB, not e-mail). 
 
Level 3 (“Strong”) –  
This includes genetic 
data that is particularly 
sensitive or poses a 

There are no 
restrictions on use of 
Level 1 genetic data.  
 
Level 2 – Investigators 
must make no attempts 
to re-identify 
participants. They must 
also destroy data after it 
is no longer needed. 
 
Level 3 – In addition to 
the restrictions on the 
use of Level 2 data, 
each member of the 
access control group 
must be expressly 
authorized to access 
the data by a principal 
investigator (PI), and 
changes to group 
membership must be 
approved and reviewed 
at least once every 6 
months by a PI. 
 
Level 4 - In addition to 
the restrictions on the 
use of Level 2 and 3 
data, transmission of 
unencrypted data 
between systems, even 
between members of 

There are no security 
requirements for Level 1 
genetic data.  
 
Level 2 – Investigators 
must limit access to 
systems used to process 
or store unencrypted data 
to authorized individuals 
and WTSI systems 
administrators. Data 
stored on systems without 
such access control 
restrictions must be 
encrypted, and decryption 
keys must be handled 
securely.  
 
Level 3 – Encryption 
systems should be “as 
secure as practically 
possible.” 
 
Level 4 – Systems used to 
process or store 
unencrypted data must 
either isolate all projects 
or limit access to the 
entire system only to 
members of the access 
control group for a single 
project. Portable systems 
may not be used to store 
unencrypted genetic data 

111 Wellcome Trust Sanger Institute, ‘Data Sharing Policy and Guidelines’ 
<http://www.sanger.ac.uk/sites/default/files/Jul2017/Data_Sharing_Policy_and_Guidelines_July_2017_0.pd
f> accessed 20 November 2017; The Wellcome Trust, ‘Developing an Outputs Management Plan’ 
(Wellcome, 2017) <https://wellcome.ac.uk/funding/managing-grant/developing-outputs-management-plan> 
accessed 12 September 2017; Wellcome Trust Sanger Institute, ‘WTSI Human Data Security Policy’ 
<https://www.sanger.ac.uk/legal/assets/wtsi-hgdsp-201510hpfinal.pdf>; The Wellcome Trust (n 90). 
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dates to year only, 
and removing 
unique identifiers 
such as health 
insurance numbers; 
however, WTSI also 
stipulates that 
anonymization is 
context-specific and 
thus these steps 
may not sufficiently 
protect every 
dataset.  As a 

112

result, WTSI requires 
that before research 
data (such as 
summary statistics 
of genomic data) is 
made openly 
accessible, the risk 
of re-identification 
be assessed by 
researchers seeking 
to publish the 
results of a study 
using such 
anonymized data. 

greater risk of 
re-identification. It also 
includes data that has 
had consent given by a 
participant explicitly 
requiring stronger 
security. Each member 
of the access control 
group must be expressly 
authorized to access the 
data. Authorization must 
be granted by a principal 
investigator and 
membership reviewed at 
least once every 6 
months. 
 
Level 4 (“Personal”) – 
This includes genetic 
data that contains 
“personal data” 
including name, address, 
email, and other 
information that could 
lead to re-identification if 
coupled with other 
information “reasonably 
available” to those 
accessing the data. 

the control access 
group, is not permitted 
 

unless they are physically 
locked and secured. The 
system must also use a 
higher-level 
authentication system, 
such as two-factor 
authentication. 

UK BioBank 
 
Summary 
De-Identificati
on Protocol; 
Data 
Management 
& Sharing 
Plan  

113

Data must be 
de-identified 
in-house by UK 
BioBank before it is 
released it to 
researchers. 
 
The UK Biobank 
takes the stance 
that genomic data, 
such as “genetic 

Like the NIH, ICGC, and 
WTSI, UK Biobank 
distinguishes between 
publicly accessible and 
controlled-access 
datasets. The Biobank 
Data Showcase makes 
publicly available 
genetic summary data, 
but individual-level 
anonymized data is only 

Publications by 
researchers must 
comply with BioBank’s 
de-identification 
protocol and cannot 
contain information that 
could lead to 
re-identification of an 
individual.  
 

A limited number of 
Biobank staff have access 
to systems that could be 
used by an adversary for 
reverse de-identification 
and subsequent 
re-identification of a 
participant, and such 
systems are regularly 
audited. 
 

112 Data is considered to be either low risk (statistical figures like p-value, z-score, confidence intervals), 
moderate risk (allele frequency), or high risk (genome-wide linkage disequilibrium measures). Genomic 
summary statistics contains at least low-risk data. Decisions about publishing moderate and high-risk data 
are context-specific determinations. For example, re-identification risk is high when the dataset contains 
rare alleles. 
113 UK Biobank, ‘Summary De-Identification Protocol’ 
<http://www.ukbiobank.ac.uk/wp-content/uploads/2013/10/ukbiobank-summary-de-identification-protocol.p
df> accessed 19 September 2017; ‘About UK Biobank’ (n 91); UK Biobank, ‘Access Procedures: Application 
and Review Procedures for Access to the UK Biobank Resource’ 
<http://www.ukbiobank.ac.uk/wp-content/uploads/2012/09/Access-Procedures-2011.pdf> accessed 18 
September 2017. 
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sequence data,” is 
not readily 
identifiable and 
therefore poses little 
privacy risk. 
 
Specifically, Biobank 
states that the 
practical risk of 
re-identification 
posed by genetic 
sequence data is 
small because of its 
“virtual obscurity”, 
i.e., an adversary 
would need a 
reliable reference 
sample that 
identifies that 
participant. 
However, Biobank 
notes that their 
policies are subject 
to change as 
technology 
improves and 
genetic data 
coupled to 
demographic 
information 
becomes 
increasingly publicly 
accessible. 
 
In terms of clinical 
data, the UK 
Biobank only holds 
participant data in 
what it calls “reverse 
anonymized form.” 
This is essentially 
pseudonymous data 
from which names 
have been removed 
and health numbers 
encrypted in a 
reversible manner. 
Specifically, the 
anonymization is 
only reversible by 
Biobank through its 
internal database, 
and not by the 

available to approved 
researchers.  
 
The Access 
Sub-Committee (ASC) of 
the Board of UK Biobank 
is responsible for 
reviewing and granting 
access to protected 
data. Researchers must 
demonstrate that the 
data will be used for 
“public good” and 
otherwise comply with 
the requirements 
described in Access 
Procedures. 

However, if researchers 
request more detailed 
information pertaining 
to their study (such as 
participants’ 
geographical locations) 
which may increase the 
risk of re-identification, 
Biobank may elect to 
link the anonymized 
date back to the 
participant and return 
the requested data to 
the researcher. 
 
Unlike the genomic 
data sharing policies of 
the other leading 
organizations, there is 
no time limit on the 
retention of protected 
data. Upon termination 
of use, data need not 
even be “destroyed” – 
only rendered 
inaccessible for further 
use. 

Researchers granted 
access to data must 
provide information about 
their institution’s data 
security systems and 
protocol, and must agree 
that Biobank has the right 
to audit their security 
systems. 
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accessing 
researcher. 
 
Data to which 
researchers are 
given access is 
further de-identified 
according to the UK 
Biobank’s summary 
de-identification 
protocol. Generally, 
individuals’ dates of 
birth and locations 
are generalized, and 
the UK Biobank 
does not release 
unedited free text, 
general practitioner 
details and 
healthcare location 
information. 

The Cancer 
Genome Atlas 
(TCGA) 
 
Data Sharing 
and Data 
Management; 
Data Access 
Policies  

114

 

TCGA receives data 
from research sites 
in HIPAA Limited 
Data Set (LDS) 
format, which has 
some identifiers 
removed but is still 
considered to be 
protected health 
information. 
However, all data to 
which researchers 
are given access is 
de-identified 
according to the 
HIPAA Safe Harbor 
standard. Data 
collected from 
non-US sites is also 
treated in 
accordance with 
HIPAA, though not 
subject to its 
requirements 
 
Although TCGA 
considers research 

Like the NIH, ICGC, and 
Biobank, TCGA has also 
implemented a 
two-tiered data access 
system, which will be 
discussed in more detail 
later. The open-access 
tier is accessible in 
public databases and 
“contain[s] only data that 
cannot be analyzed to 
generate a dataset 
unique to an individual.” 
 
The controlled-access 
tier has been 
implemented to 
safeguard “data that are 
associated to a unique, 
but not directly 
identified, person,” 
including individual-level 
SNP variants and whole 
genome sequence data. 

TCGA’s data access 
policy places limitations 
on all researchers’ 
access to and use of 
data beyond what is 
required by OHRP.  
 
Controlled-access data 
is available to qualified 
researchers who submit 
Data Access Requests 
(DAR) and, in 
conjunction with their 
respective institutions, 
certify agreement to the 
TCGA Data Use 
Certification (DUC). 
Under the terms of the 
certification, approved 
users agree not to 
attempt to contact 
participants or 
redistribute data to third 
parties. 

As of 2016, TCGA utilizes 
the National Cancer 
Institute Center for Cancer 
Genomics’ Genomic Data 
Commons (GDC) to 
provide access to 
aggregated genomic data 
stored in a cloud 
computing environment. 
 
Genomic data from 
various projects are 
pooled into one database, 
making sharing of data 
easier, whereas local 
management systems, 
though more 
cumbersome, prevented 
unauthorized 
redistribution of data. In 
addition, the GDC 
harmonizes data, allowing 
comparison of different 
datasets (increasing their 
utility, but additionally 
increasing the risk of 
re-identification). 

114 ‘About TCGA’ (n 92); The Cancer Genome Atlas, ‘Data Use Certification Agreement’ 
<https://cancergenome.nih.gov/pdfs/Data_Use_Certv082014> accessed 9 November 2017; National 
Institutes of Health, ‘NIH Security Best Practices for Controlled-Access Data Subject to the NIH Genomic 
Data Sharing (GDS) Policy’ (n 100). 
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with de-identified 
data to fall outside 
of the scope of 
human subjects 
research as outlined 
in the NIH Office for 
Human Research 
Protections (OHRP) 
“Guidance on 
Research Involving 
Coded Private 
Information or 
Biological 
Specimens,” TCGA 
allows an 
investigator’s 
IRB/research review 
body to determine 
whether the project 
constitutes human 
subjects research.  

115

 
 

115 The Cancer Genome Atlas Program, ‘Human Subjects Protection and Data Access Policies’ 
<https://cancergenome.nih.gov/abouttcga/policies/tcga-human-subjects-data-policies>. 
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