The expeditious and efficient sharing of COVID-19 data will continue to shape the response to the pandemic. The importance of such knowledge exchange was highlighted in past health emergencies, such as the 2014-2015 Ebola epidemic in West Africa. However, despite the global proliferation in coronavirus research, data generation and dissemination have been complicated by several factors. International collaborations, which account for over 20% of all scientific publications have already been impacted by the pandemic, as face-to-face meetings across geopolitical boundaries have been hindered by travel restrictions. Research teams tasked with solving this gargantuan problem are consequently smaller than those who worked on other coronaviruses in the past. Another issue is the complexities that arise when sharing patient-level data across jurisdictions and organizations.

In response to the current COVID-19 pandemic, data protection authorities (DPAs) from around the world have adapted or clarified their requirements. Acknowledging the importance of a vigorous response to the pandemic, some DPAs have responded by pointing out that existing privacy law already has the flexibility to make any necessary adjustments to privacy practices. Regulators around the world are adapting and relaxing their requirements to enable research, and to expedite development and approval of potential new treatments. Notably, the US Department of Health and Human Services announced that, on a discretionary basis, they would not impose their usual penalties for violation of the HIPAA Privacy Rule for “good faith uses and disclosures” of PHI during the pandemic. While this may seem to suggest that de-identification could be ignored, there are many unfortunate examples of harm coming to...
individuals known to be diagnosed with COVID-19, and when the pandemic is over those sharing and
releasing data may be held to account for their practices if perceived as overly permissive.

The importance of sharing patient-level COVID-19 data to drive evidence-based decision making has been
highlighted by data science consortia and researchers alike. However, both groups agree that data with
this level of granularity have not been widely available. While publication of de-identified clinical
documents has been mandated under regulations such as European Medicines Agency Policy 0070 and
Health Canada Public Release of Clinical Information, structured clinical trial data is predominantly shared
on a voluntary basis. Due to the highly personal and potentially identifying nature of such data, secondary
use is strictly controlled across jurisdictions. Either explicit consent is sought from the data subjects for
such re-use, which may be impractical (or even impossible), or the data are de-identified to the degree
that they are classified as non-personal and therefore not subject to the same restrictions.

There are some notable cases where de-identified patient-level COVID-19 data have been successfully
shared, such as on secure platforms like Vivli who launched a dedicated portal where such assets are
hosted free of charge. It is generally accepted that to derive as much usefulness from de-identified data
as possible, a statistical approach, which considers not only the data but the sharing or release context, is
the optimal strategy. Understanding the context of data sharing or release is critical for assessing
whether vulnerabilities are realistic and could be exploited. The concept of evaluating vulnerabilities and
putting them in context is one that is well understood in the field of data security. It is an approach that
has also been identified as critical for moving the debate forward with a more meaningful focus on the
process of de-identification and risk.

Timely de-identification of large clinical datasets such that they can be released quickly to contribute to
COVID-19 research efforts is likely to prove a challenge for most data custodians, and this, as well as
general concerns about patient privacy, may explain why so few datasets have been made available to
date. For example, simple methods such as aggregating counts introduce risks many may not be aware
of, and such data may have limited usefulness in practice. The use of privacy models, of which there are
many to choose from, becomes even more critical with more detailed and complex data, and empirical

19%3B%20recommendations%20and%20guidelines%2C%205th%20release%20final%20draft%29%2028%20May%202020.pdf>; Christopher V Cosgriff, Daniel K Ebner and Leo Anthony Celi, ‘Data Sharing in the Era of COVID-
19’ (2020) 2 The Lancet Digital Health e224.
public-release-clinical-information-guidance/document.html>; EMA (n 9).
11 Institute of Medicine, Sharing Clinical Trial Data: Maximizing Benefits, Minimizing Risk. Consensus Study Report.
12 Stephen Bamford, ‘Applications of Privacy-Enhancing Technology to Data Sharing at a Global Pharmaceutical
13 Luk Arbuckle, ‘Aggregated Data Provides a False Sense of Security’ (International Association of Privacy
testing is needed to validate assumptions.15 New methods such as synthetic data are also emerging that are suitable for some use cases, but again privacy risks exist since data could be replicated or allow for the correct attribution of personal information.16

Whereas the level of expertise and knowledge required to deploy de-identification at scale can be daunting for the variety of data needed, the profession is maturing with training and resources.17 The degree to which the data should be transformed will depend upon the identifiability, which falls on a spectrum.18 Depending upon the context in which the data will be shared or released, and the security and contractual controls in place, it may be possible to preserve data utility, thus maximizing the benefit of the data for secondary use.

Privacy requirements should not be viewed merely as obstacles to overcome on the journey to sharing useful data. Rather, data custodians should survey the privacy landscape with a lens wide enough to encompass those regulations which have been developed with purpose of protecting the personal rights of data subjects while simultaneously fostering secondary research. While performing statistical de-identification often requires expert application of risk assessment, privacy models, and software, we must also look beyond the technical, and apply privacy best practices to establish trust from the public in the research and medical communities that are working toward finding effective treatments for COVID-19.

16 Nicolas Ruiz, Krishnamurty Muralidhar and Josep Domingo-Ferrer, ‘On the Privacy Guarantees of Synthetic Data: A Reassessment from the Maximum-Knowledge Attacker Perspective’ (Springer 2018).

17 HITRUST Academy, ‘Data De-Identification Methodology’ (HITRUST Academy) <https://hitrustalliance.net/hitrust-academy/de-identification-methodology-course/>.