The coronavirus pandemic has placed renewed focus on expanded access (EA) programs that provide compassionate use exceptions to waves of patients seeking innovative pharmacological solutions.\(^1\) While commendable, justifiable, and empathetic, The US, as well as most if not all EA programs\(^2-4\) are not designed to collect clinical data for the FDA New Drug Application (NDA) process, or similar processes worldwide.\(^5\)

Currently, EA programs lack the necessary rigor of meticulously crafted and controlled randomized controlled trials (RCT), \(^6\) the gold standard in FDA clinical trials, \(^7\) which, among other requirements, ensure (i) that each patient is closely monitored for adverse effects, (ii) that the data is properly documented, (iii) that the results are reliable and not biased by externalities, and (iv) that the results are casual not simply correlated. Further, EAs impede the approval process through diverting limited supplies of the drug, putative patients, and healthcare professionals. A resulting delay of regulatory approval harms the general public.

We propose that the negative effects of EAs be mitigated through a practical merging of EA programs into clinical trials. EA data can be valuable in an FDA framework that incorporates Real-World Data (RWD) as suitable substitutes for RCT data (which is often biased against underrepresented minorities, among other concerns\(^8\)). To its credit, the UK, under the Early Access to Medicines Scheme, was the first to allow RWD from a compassionate use program to be officially considered as part of regulatory submission.\(^9\)

In the US, the consideration of RWD within the clinical trial process is already mandated by the 21st Century Cures Act, but progress has been slow.\(^10\) However, desperate times have allowed for the development and implementation of technological and regulatory wallflowers.\(^11,12\) Perhaps the time is ripe for RWD incorporation as well. The FDA has an opportunity now to set standards for RWD such that it is statistical meaningful and actionable with minimal bias, transparent and verifiable.\(^13\) This framework could allow for cohorts of EA patients to be included in regulatory trials, impelling rather than impeding drug development.

Expanded data collection is only part of the solution. Digital twins, i.e., \textit{in silico} representations of real-world objects can be an alternative to morally problematic placebos in EA datasets. Originally conceived for NASA space vehicle lifecycle management,\(^14\) they have been used primarily in engineering fields wherein devices can be stress-tested virtually.\(^15,16\) Emerging research and patent
applications suggest promising developments in creating digital twins of living organisms that could be used in EA clinical trials.17-23

Patient digital twins would use novel data sources24 like demographic data, family history electronic health records, laboratory results, physiologic measurements and insurance data, imaging and signal data and other unstructured health data, as well as substantial ‘omic information arising from a patient’s genome, microbiome, transcriptome, proteome and metabolome.25

Similarly, RWD can be extracted from underused data sources, including: electronic health records (EHR), billing, claims, and insurance data, self-identifying information provided by patient registries, groups, social media pages, and information collected by professional and recreational internet of things (IoT) devices ranging from insulin pumps to Apple Watches.26

While promising, this proposal has technical limitations as RWD and the health data necessary for digital twins typically lack structure, standardization and clarity, and often includes confounding factors. Data for both RWD and Digital Twins also create ethical, legal and social limitations, particularly privacy concerns relating to the various data sources,27 as well as confounding biases such as: (i) information biases stemming from errors in data capture, lack of standardization, or incomplete data retrieval; (ii) attrition biases given the lack of structured surveillance; (iii) compliance or performance bias resulting from EA patients failing to adhere to regimented treatment; (iv) confounding biases as a result of the heterogeneity of the patients from varied demographics, clinical environments, and comorbidities; (v) immortal time biases; and, (vi) selection bias. Furthermore, although it might look like that the privacy and identifiability issues relating to these data can be resolved with suggested anonymization techniques within the current legal framework (e.g. HIPPA), recent evidence suggests that there are hidden identifying information and privacy leakages when multiple sources of health data are combined.28,29 Hence, any proposed framework needs to incorporate solutions to anonymity and privacy beyond the traditional approaches that are currently in place.

With RWD efforts already underway for various aspects of COVID-19 treatment, this area of research is expanding rapidly.30 There are already some efforts to incorporate RWD into the clinical trial process,31 and with the FDA promising to update its current guidelines32 and tools33 for the use of RWD by the end of 2021, this is an opportune moment to work toward a better understanding of the ethical, social and legal limitations relating to areas such as patient consent, anonymity, patient data de-identification, security, privacy, liability, transparency and standardization of RWD such that future RWD collection efforts can move forward safely and effectively.
Gursoy G and Gerstein M. “As coronavirus testing expands, new personal privacy issues arise.” (2020) Hartford Courant

COVID-19 Evidence Accelerator: https://evidenceaccelerator.org/

