
Erasure of Personal Data in Distributed Systems
Neville Samuell, VP Eng @ Ethyca

“A Little Respect”

I’m Neville Samuell. As VP of Engineering at Ethyca, I
lead a distributed team building Ethyca’s data privacy
automation platform, which helps businesses of all
sizes efficiently honor privacy rights for their customers.

At Ethyca, our vision is to be the trust infrastructure of
the Internet. We’re building software to help engineers
create more respectful systems throughout the SDLC,
both with tools to better design and annotate data
during development, and with our production platform
that integrates with deployed applications.

BIO

 @nsamuell

AGENDA

1. Key Concepts
2. Basic Example: Application DB
3. Traversing The Tree
4. Connecting Across Datastores
5. Designing Respectful Systems

OUR EXAMPLE

● Store and Checkout web
applications for users

● Order service for backend
management

● Postgres database for
primary application data

● Redis session store
● Snowflake data warehouse

for analytics

WHERE DOES PERSONAL DATA LIVE?

Obvious

Addresses table

Users table

Related

Favorites table

Referrals table

Orders table

Other

History tables

etc.

Events tables

KEY CONCEPT: RIGHT TO FORGET

● Fundamental feature of respectful systems and most regulations
● Canonical example: GDPR Article 17
● Requires you to give data subjects (ie. users) the right to erase all

their personal data from your systems
● GDPR allows 30 days to respond, CCPA is similar but allows 45 days
● Many restrictions & exceptions… but not for this talk!

KEY CONCEPT: ERASING ENTIRE ROWS

● On the surface, erasing sounds simple:
○ DELETE FROM users WHERE users.email = ‘subject@example.com’

● Practically, however this rarely works:
○ Personal data tends to be copied and spread around
○ Leaves orphaned records with personal data (addresses, orders…),

which breaks referential integrity of database
○ Deletes non-personal data that is stored alongside
○ Can’t natively CASCADE out to other datastores
○ etc.

mailto:subject@example.com

KEY CONCEPT: ERASING INDIVIDUAL FIELDS

● Erasure requires forgetting all personal data about a subject
● However, erasing entire rows will also remove anonymous data

(aggregate historical user counts, product usage data, etc.)
● Instead, can selectively erase individual fields, if you’re careful
● This preserves aggregate row counts, maintains referential integrity, etc.
● In other words:

○ Use DELETE statements to erase entire rows where possible
○ Use UPDATE statements to erase personal data fields otherwise

BASIC ALGORITHM

1. Receive request from
identified user (e.g. email)

2. Collect matching row IDs
3. For each row, collect all

related row IDs
4. Repeat until all rows are

identified
5. Erase personal data in all the

collected rows

EXAMPLE CODE: USERS TABLE

id email name

1 test@example.com Example Name

2 another@example.com Another Name

3 more@example.com Repeated Name

4 unique@example.com Repeated Name

EXAMPLE CODE: ERASE USER BY EMAIL

1. Receive request from identified user (e.g. email)
2. Collect matching row IDs
3. For each row, erase all personal data fields
4. Repeat

EXAMPLE CODE: ERASE USER ROW BY ID

● Remember: secure hashing isn’t trivial, use a real library!
● Don’t forget a salt! If you’re careful, use the same salt for the

entire erasure request for consistent hashes across tables
● Notice that erasure strategy varies by field, based on:

○ Data types (strings, numbers, datetimes, etc.)
○ Data categories (emails, locations, etc.)
○ Application constraints (uniqueness, validations, etc.)

EXAMPLE CODE: COMPUTE HASHED USER VALUES

EXAMPLE CODE: USERS TABLE (ERASED)

id email name

1 4144754cc22727a70dcb... 70e722de552ffcea6688be...

2 another@example.com Another Name

3 more@example.com Repeated Name

4 unique@example.com Repeated Name

TRAVERSING RELATIONSHIPS

● Apply the same basic strategy for all
related tables. For example:
○ user “has-many” addresses
○ user “has-many” orders

● For each related table:
1. Start from the user_id
2. Collect matching row IDs
3. For each row, erase personal data
4. Repeat

EXAMPLE CODE: ADDRESSES TABLE

id user_id name street city state zip

1 1 Home 123 Example St New York NY 10011

2 1 Office 456 Imaginary Ln Dallas TX 75001

3 4 Home 100 W 100 St Salt Lake City UT 84190

● Use the user_ids we collected to find address IDs
● Erase all fields in each related address row
● Note that hashing might not be desirable; use static

values instead (NULL, empty strings, etc.)

● Use the user_ids we collected in the first phase to collect IDs
● Erase all fields in each related address row

EXAMPLE CODE: ADDRESSES TABLE

EXAMPLE CODE: ADDRESSES TABLE

EXAMPLE CODE: ADDRESSES TABLE

id user_id name street city state zip

1 1 NULL NULL NULL NULL NULL

2 1 NULL NULL NULL NULL NULL

3 4 Home 100 W 100 St Salt Lake City UT 84190

● Preserves the fact that User #1 had two addresses
● Be careful that your anonymized data is truly

anonymous!

● Example where deleting entire row may be impossible!
● Must preserve the state and amount for tax purposes
● However, can still erase email address
● And, potentially, unlink the user & address IDs

EXAMPLE CODE: ORDERS TABLE

id user_id address_id order_email state amount

1 1 1 test@example.com NY 100.00

2 1 2 test+TX@example.com TX 500.00

3 4 3 accounts@example.com UT 150.00

4 4 3 unique@example.com UT 50.00

EXAMPLE CODE: ORDERS TABLE

EXAMPLE CODE: ORDERS TABLE

id user_id address_id order_email state amount

1 NULL NULL NULL NY 100.00

2 NULL NULL NULL TX 500.00

3 4 3 accounts@example.com UT 150.00

4 4 3 unique@example.com UT 50.00

TRAVERSAL ORDER

● Order of these erasures matters!
● Think of it like a tree, and start at

the “leaf nodes” and work down
towards the root:
○ Orders → Addresses → Users

● Allows the erasure to be
interruptible; integrity is
maintained throughout

address_id

1

address_id

2

order_id

1

order_id

2

user_id

1

EXAMPLE CODE: FULL ERASURE

● Collected IDs for users,
addresses, orders, etc.

● Erased all the primary
application data

● Now, use the collected IDs
to move downstream:
○ Data Warehouse
○ Session Store

CHECKPOINT

DATA WAREHOUSES

● Overall, use the same algorithm as a OLTP database
● However, some key differences:

○ Tend to have chains of related tables (via DAGs)
○ Often include denormalized tables for analytics (lots of copies)
○ Rarely indexed by user_id, instead partitioned by date, etc.

● This means they are slow to erase
● Therefore, the best way to erase personal data from a warehouse is to

avoid storing it in the first place

DENORMALIZED EVENTS TABLE

● May requires visiting and erasing 1000s of rows, often
without the ability to index...

id user_email user_name event timestamp

100 test@example.com Example Name logged_in 2021-01-01 12:00

101 another@example.com Another Name searched 2021-01-01 12:01

102 test@example.com Example Name searched 2021-01-01 12:02

103 test@example.com Example Name logged_out 2021-01-01 12:05

● “Row-wise” queries tend to be slow, depending on your warehouse
● Two potential improvements:

1. Group updates together for a single user that have the same values
(i.e. not hashes) and bulk update

2. Group updates together for multiple users that leverages your
partitions (e.g. dates)

BULK UPDATES

● Erased all the event data in
our warehouse

● Lastly, need to erase our
session store

CHECKPOINT

● At this point, you understand the essential algorithm:
○ Use the user ID to query documents based on your schema
○ Collect the document IDs and run erasure on each

● NoSQL data stores need to be traversed and updated differently, but the
same general principle (leaf nodes first) applies

NOSQL ERASURE

● However: what about a potential alternative?
● Assume this Redis store is simply a cache with expiry dates on all keys...
● If the expiration is less than 30 days, you can reliably let this “self-erase”
● Why stop there? Design the system to expire every 60 minutes!
● Some questions to ask when designing respectful systems:

○ How much of the user data is really needed permanently?
○ Can you design your systems to proactively erase data once used?

CACHE EXPIRATION

● Let our cache expire...
● Erasure request complete!

CHECKPOINT

● Reminder: this example was not realistic at all!
● Many applications will already have 100s or 1000s of datasets that

contain personal data, each of which needs to be customized
● Furthermore, personal data stored in unstructured blob storage is even

harder to query and erase

REALITY CHECK

● Why is something so simple in theory, so laborious in practice?
● Systems are not designed respectfully, they are designed for convenience
● It’s convenient to:

○ Capture more personal data than you have a use for
○ Copy personal data to many locations

● It’s respectful to:
○ Capture minimal amounts of personal data
○ Avoid creating copies to minimize possibilities of breach
○ Maintain metadata about what categories of data are

collected, why they are needed, where they are stored...

RESPECTFUL SYSTEMS

● Map out your systems, where data is stored, and how they are connected
● Query the primary store based on the user identity and build a

relationship tree between tables and dependent systems
● Traverse (in reverse order) and erasing personal data from each
● Preserve anonymous data along the way, especially financial, tax, etc.
● For analytics warehouses, consider bulk updates for performance
● If you avoid storing personal data in the first place, or automatically

erase it (like a cache!) you can achieve this goal proactively
● Design respectful systems!

SUMMARY

Thanks!

Questions? Follow @nsamuell on Twitter, or neville@ethyca.com

