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Note: This article is part of a larger series focused on managing the risks of artificial intelligence (AI) and 
analytics, tailored toward legal and privacy personnel. The series is a joint collaboration between bnh.ai, a 
boutique law firm specializing in AI and analytics, and the Future of Privacy Forum, a non-profit focusing 
on data governance for emerging technologies.  
 
 
Behind all the hype, AI is an early-stage, high-risk technology that creates complex grounds for 
discrimination while also posing privacy, security, and other liability concerns. Given recent EU 
proposals and FTC guidance, AI is fast becoming a major topic of concern for lawyers. Because 
AI has the potential to transform industries and entire markets, those at the cutting edge of legal 
practice are naturally bullish about the opportunity to help their clients capture its economic 
value. Yet to act effectively as counsel, lawyers must also be vigilant of the very real challenges 
of AI. Lawyers are trained to respond to risks that threaten the market position or operating 
capital of their clients. However, when it comes to AI, it can be difficult for lawyers to provide the 
best guidance without some basic technical knowledge. This article shares some key insights 
from our shared experiences to help lawyers feel more at ease responding to AI questions when 
they arise.   

I. AI Is Probabilistic, Complex, and Dynamic  
There are many different types of AI, but over the past few decades, machine learning (ML) has 
become the dominant paradigm.1 ML algorithms identify patterns in recorded data and apply 
those patterns to new data to try to make accurate decisions. This means that ML-based 
decisions are probabilistic in nature. Even if an ML system could be perfectly designed and 
implemented, it is statistically certain that at some point it will produce a wrong result. All ML 
systems incorporate probabilistic statistics, and those systems can make incorrect 
classifications, recommendations, or other outputs.  
 
ML systems are also fantastically complex. Contemporary ML systems can learn billions or 
more rules from data and apply those rules on a myriad of interacting data inputs to arrive at an 

 
1 Commentators have often used the image of Russian nesting (Matryoshka) dolls to illustrate these relationships: AI 
includes machine learning, and machine learning, in turn, includes deep learning. Machine learning and deep 
learning have risen to the forefront of commercial adoption of AI in applications areas such as fraud detection, e-
commerce, and computer vision. See, e.g., The Definitive Glossary of Higher Mathematical Jargon, MATH VAULT 
(last accessed Mar. 4, 2021), https://mathvault.ca/math-glossary/#algo; Eda Kavlakoglu, AI vs. Machine Learning vs. 
Deep Learning vs. Neural Networks: What’s the Difference?, IBM BLOG (May 27, 2020), 
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks. 



                    
 

 2 

output recommendation. Embed that billion-rule ML system into an already-complex enterprise 
software application and even the most skilled engineers can lose track of precisely how the 
system works. To make matters worse, ML systems decay over time, losing their use-case 
fitness based on their initial training data. Most ML systems are trained on a snapshot of a 
dynamic world as represented by a static training dataset. When events in the real world drift, 
change, or crash (as in the case of COVID-19) away from the patterns reflected by that training 
dataset, ML systems are likely to become wrong more frequently and cause issues that require 
legal and technical attention. Even in the moment of the “snapshot,” there are other qualifiers for 
the reliability, effectiveness, and appropriateness of training data. How it’s collected, processed, 
and labeled all bear on whether it is sufficient to inform an AI system in a way fit for a given 
application or population.   
 
While all this may sound intimidating, an existing regulatory framework addresses many of 
these basic performance risks. Large financial institutions have been deploying complex 
decision-making models for decades, and the Federal Reserve’s model risk management 
guidance (SR 11-7) lays out specific process and technical controls that are a useful starting 
point for handling the probabilistic, complex, and dynamic characteristics of AI systems. Most 
commercial AI projects would benefit from some aspect of model risk management, whether it’s 
being monitored by federal regulators or not. Lawyers at firms and in-house alike, who find 
themselves needing to consider AI-based systems, would do well to understand options and 
best practices for model risk management, starting with understanding and generalizing the 
guidance offered by SR 11-7. 

II. Make Transparency an Actionable Priority 
Immense complexity and unavoidable statistical probabilities in ML systems makes 
transparency a difficult task. Alas, parties deploying—and thereby profiting from—AI can 
nonetheless be held liable for issues relating to a lack of transparency. Governance frameworks 
should include steps to promote transparency, whether preemptively or as required by industry- 
or jurisdiction-specific regulations. For example, the Equal Credit Opportunity Act (ECOA) and 
the Fair Credit Reporting Act (FCRA) mandate customer-level explanations known as “adverse 
action notices” for automated decisions in the consumer finance space. These laws set an 
example for the content and timing of notifications relating to AI decisions that could adversely 
affect customers, as well as establish the terms of an appeals process against those decisions. 
Explanations that include a logical consumer recourse process dramatically decrease risks 
associated with AI-based products and help prepare organizations for future AI transparency 
requirements. New laws, like the California Privacy Rights Act (CPRA) and the proposed EU AI 
rules for high-risk AI systems, will likely require high levels of transparency, even for 
applications outside of financial services.  
 
Some AI system decisions may be sufficiently interpretable to nontechnical stakeholders today, 
like the written adverse action notices mentioned above, in which reasons for certain decisions 
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are spelled out in plain English to consumers. But oftentimes the more realistic goal for an AI 
system is to be explainable to its operators and direct overseers.2  
 
The import of a system that’s not fully understood by its operators is that it is much harder to 
identify and sufficiently mitigate risks. One of the best strategies for promoting transparency, 
particularly in light of the challenges around “black-box” systems that are unfortunately common 
in the US today, is to rigorously pursue best practices with respect to AI system documentation. 
This is good news for lawyers who are adept in the skill and attention to detail that is required to 
institute and enforce such documentation practices. Standardized documentation of AI systems, 
with emphasis on development, measurement, and testing processes, is crucial to enable 
ongoing and effective governance of AI systems. Attorneys can help by creating templates for 
such documentation and by assuring that documented technology and development processes 
are legally defensible.   

III. Bias is a Major Problem—But Not the Only Problem 
Algorithmic bias can generally be thought of as outputs of an AI system that exhibits an 
unjustified differential treatment between two groups. AI systems learn from data, including its 
biases, and can perpetuate that bias on a massive scale. The racism, sexism, ageism, and 
other biases that permeate our culture also permeate the data collected about us and in turn the 
AI systems that are trained on that data.  
 
On a conceptual level, it is important to note that although algorithmic bias often reflects 
unlawful discrimination, it does not constitute unlawful discrimination per se. Bias also includes 
the broader category of unfair or unexpected inequitable outcomes. While these may not 
amount to illegal discrimination of protected classes, they may still be problematic for 
organizations, leading to other types of liability or significant reputational damage. And unlawful 
algorithmic bias puts companies at risk of serious liability under cross-jurisdictional anti-
discrimination laws.3 This highlights the need for organizations to adopt methods that test for 
and mitigate bias on the basis of legal precedent.  
 

 
2 In recent work by the National Institute for Standards and Technology (NIST), interpretation is defined 
as a high-level, meaningful mental representation that contextualizes a stimulus and leverages human 
background knowledge. An interpretable AI system should provide users with a description of what a data 
point or model output means. An explanation is a low-level, detailed mental representation that seeks to 
describe some complex process. An AI system explanation is a description of how some system 
mechanism or output came to be. See David A. Broniatowski, Psychological Foundations of Explainability 
and Interpretability in Artificial Intelligence (2021), 
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931426.  
3 For example, The Equal Credit Opportunity Act (ECOA), The Fair Credit Reporting Act (FCRA), The Fair 
Housing Act (FHA), and regulatory guidance, such as the Interagency Guidance on Model Risk 
Management (Federal Reserve Board, SR Letter 11–7). The EU Consumer Credit Directive, Guidance on 
Annual Percentage Rates (APR), and General Data Protection Regulation (GDPR) serve to provide 
similar protections for European consumers. 
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Because today’s AI systems learn from data generated—in some way—by people and existing 
systems, there can be no unbiased AI system. If an organization is using AI systems to make 
decisions that could potentially be discriminatory under law, attorneys should be involved in the 
development process alongside data scientists. Those anti-discrimination laws, while imperfect, 
provide some of the clearest guidance available for AI bias problems. While data scientists 
might find the stipulations in those laws burdensome, the law offers some answers in a space 
where answers are very hard to find. Moreover, academic research and open-source software 
addressing algorithmic bias is often published without serious consideration of applicable laws. 
So, organizations should take care to ensure that their code and governance practices with 
respect to identifying and mitigating bias have a firm basis in applicable law.  
 
Organizations are also at risk of over-indexing on bias while overlooking other important types 
of risk. Issues of data privacy, information security, product liability, and third-party risks, as well 
as the performance and transparency problems discussed in previous sections, are all critical 
risks that firms should, and eventually must, address in bringing robust AI systems to market. Is 
the system secure? Is the system using data without consent? Many organizations are 
operating AI systems without clear answers to these questions. Look for bias problems first, but 
don’t get outflanked by privacy and security concerns or an unscrupulous third party.  

IV. There Is More to AI System Performance Than Accuracy  
Over decades of academic research and countless hackathons and Kaggle competitions, 
demonstrating accuracy on public benchmark datasets became the gold standard by which a 
new AI algorithm’s quality is measured. ML performance contests such as the KDD Cup, 
Kaggle, and MLPerf have played an outsized role in setting the parameters for what constitutes 
“data science.”4 These contests have undoubtedly contributed to the breakneck pace of 
innovation in the field. But they’ve also led to a doubling-down on accuracy as the yardstick by 
which all applied data science and AI projects are measured.  
 
In the real world, however, using accuracy to measure all AI is like using a yardstick to measure 
the ocean. It is woefully inadequate to capture the broad risks associated with making impactful 
decisions quickly and at web-scale. The industry’s current conception of accuracy tells us 
nothing about a system’s transparency, fairness, privacy, or security, in addition to presenting a 
limited representation of what the construction of “accuracy” itself claims to measure. In a 
seemingly shocking admission, forty research scientists added their names to a paper 
demonstrating that accuracy on test data benchmarks often does not translate to accuracy on 
live data.  
 

 
4 “Data science” tends to refer to the practice of using data to train ML algorithms, and the phrase has 
become common parlance for companies implementing AI. The term dates back to 1974 (or perhaps 
further), coined then by the prominent Danish computer scientist Peter Naur. Data science, despite the  
moniker, is yet to be fully established as a distinct academic discipline.  
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What does this mean for attorneys? Attorneys and data scientists need to work together to 
create more robust ways of benchmarking AI performance that focus on real-world performance 
and harm. While AI performance and legality will not always be the same, both professions can 
revise current thinking to imagine performance beyond high scores for accuracy on benchmark 
datasets. 

V. The Hard Work Is Just Beginning  
Unfortunately at this stage of industry and development, there are few professional standards 
for AI practitioners. Although AI has been the subject of academic research since at least the 
1950s, and it has been used commercially for decades in financial services, 
telecommunications, and e-commerce, AI is still in its infancy throughout the broader economy. 
This too presents an opportunity for lawyers. Your organization probably needs AI 
documentation templates, policies that govern the development and use of AI, and ad hoc 
guidance to ensure different types of AI systems comply with existing and near-future 
regulations. If you’re not providing this counsel, technical practitioners are likely operating in the 
dark when it comes to their legal obligations.   
 
Some researchers, practitioners, journalists, activists, and even attorneys have started the work 
of mitigating the risks and liabilities posed by today’s AI systems. Indeed, there are statistical 
tests to detect algorithmic discrimination and even hope for future technical wizardry to help 
mitigate against it. Businesses are beginning to define and implement AI principles and make 
serious attempts at diversity and inclusion for tech teams. And laws like ECOA, GDPR, CPRA, 
the proposed EU AI regulation, and others form the legal foundation for regulating AI. However, 
technical mitigation attempts still falter, many fledgling risk mitigations have proven ineffective, 
and the FTC and other regulatory agencies are still relying on general antitrust and unfair and 
deceptive practice (UDAP) standards to keep the worst AI offenders in line. As more 
organizations begin to entrust AI with high-stakes decisions, there is a reckoning on the horizon.  
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