Encryption_Safe_Harbours
ENCRYPTION SAFE H ARBOURS AND D ATA BREACH N OTIFICATION LAWS Mark Burdon a, Jason Reid a and Rouhshi Low a ABSTRACT Data breach notification laws require organizations to notify affected persons or regulatory authorities when an unauthorized acquisition of personal data occurs. Most laws provide a safe harbour to this obligation if acquired data […]
Cookies_Constitution_and_Common-Law_2
DRAFT – PUBLISHED IN WINTER 2002 -2003 1 Cookies, The Constitution, and The Common Law: A Framework for the Right of Privacy on The Internet M ATTHEW C. KECK * That the individual shall have the full protection in person and in property is a principle as old as the common law; but it has […]
Preserving_Identities_ Protecting_Personal_Identifying_Information
1 PRESERVING IDENTITIES: PROTECTING PERSONAL IDENTIFYING INFORMATION THROUGH ENHANCED PRIVACY POLICIES AND LAWS by Robert Sprague* and Corey Ciocchetti** “The common law has always recognized a man’s house as his castle . . . . Shall the courts thus close the front entrance to constituted authority, and open wide the back door to idle or […]
FPF-DeID-FINAL-7242015jp
Future&of&Privacy&Forum&July&2015&&1″De#Identification-and-Student-Data-Understanding-De#Identification-of-Education-Records-and-Related-Requirements-of-FERPA–Appropriate”and”well/designed”student”data”use”by”schools,”families,”researchers,”and”service”providers,”greatly”enhances”teaching”and”learning.”New”technologies”linked”to”high”capacity”broadband”networks”offer”educators”and”other”stakeholders”access”to”powerful”analytical”tools,”rich”data,”and”dynamic”digital”resources,”which”can”improve”student”outcomes”and”inform”important”education”policy”reforms.”These”technology”advancements,”however,”also”invite”new”risks”for”exposing”personally”identifiable”student”data”to”unauthorized”disclosures,”misuse,”and”abuse.”In”order”to”reap”technology’s”benefits”without”encountering”these”pitfalls,”educational”agencies”and”institutions,”and”their”outside”partners,”must”develop”and”implement”more”effective”strategies”and”tools”for”promoting”students’”privacy”and”confidentiality.””””Data”de/identification”represents”one”privacy”protection”strategy”that”should”be”in”every”student”data”holder’s”playbook.”Integrated”with”other”robust”privacy”and”security”protections,”appropriate”de/identification”–”choosing”the”best”de/identification”technique”based”on”a”given”data”disclosure”purpose”and”risk”level”–”provides”a”pathway”for”protecting”student”privacy”without”compromising”data’s”value.”This”paper”provides”a”high”level”introduction”to:”(1)”education”records”de/identification”techniques;”and”(2)”explores”the”Family”Educational”Rights”and”Privacy”Act’s”(FERPA)”application”to”de/identified”education”records.1″The”paper”also”explores”how”advances”in”mathematical”and”statistical”techniques,”computational”power,”and”Internet”connectivity”may”be”making”de/identification”of”student”data”more”challenging”and”thus”raising”potential”questions”about”FERPA’s”long/standing”permissive”structure”for”sharing”non/personally”identifiable”information.”””The-Three#Legged-Stool-of-De#Identification:-Personally-Identifiable-Information,-De#identification-Strategies,-and-Data-Sharing-Purposes-&-Disclosure-Risk-Assessment–“Data”de/identification”is”a”technically”and”legally”complex”issue”with”special”nuances”across”industries”and”areas”of”law.”This”paper”narrowly”examines”the”issue”from”the”perspective”of”education”records”and”FERPA.”The”U.S.”Department”of”Education’s”Privacy”and”Technical”Assistance”Center”(PTAC)”defines”de/identification”as”the””process”of”removing”or”obscuring”any”personally”identifiable”information”from”student”records”in”a”way”that”minimizes”the”risk”of”unintended”disclosure”of”the”identity”of”individuals”and”information”about”them.”2″Understanding”PTAC’s”definition”is”critical”to”complying”with”FERPA”and”ensuring”adherence”to”de/identification”best”practice.”With”that”goal”in”mind,”this”section”introduces”three”core”student”data”de/identification”concepts”drawn”from”PTAC’s”definition”and”FERPA”(law”and”regulations):”personally”identifiable”information”(PII);”de/identification”processes;”disclosure”purpose”and”risk”assessment.”””!&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&1″Family”Educational”Rights”and”Privacy”Act,”20″U.S.C.”1232g.”2″Data!De&identification:!An!Overview!of!Basic!Terms.”U.S.”Department”of”Education”Privacy”Technical”Assistance”Center,”PTAC/GL,”Oct”2012″(updated”May”2013).&& Future&of&Privacy&Forum&July&2015&&2″Personally!Identifiable!Information!!”Educational”agencies”and”institutions,”and”their”partners,”use”de/identification”to”sever”or”obscure”connections”between”useful”education”data”and””personally”identifiable”data.””FERPA’s”sharing”prohibitions”and”requirements”(explored”later”in”the”paper)”only”apply”to”PII.”In”other”words,”non/personally”identifiable”information”may”be”shared”and”retained”without”restriction”(with”a”narrow”exception”related”to”de/identified”data”connected”to”a”record”locator).”As”a”result,”understanding”the”law’s”definition”of”PII”is”critical”to”making”determinations”about”how”student”data”may”be”used,”when,”and”by”whom.”Under”FERPA,”PII”includes,”but”is”not”limited”to:”””a)The”student’s”name”b)The”name”of”the”student’s”parent”or”other”family”members;”c)The”address”of”the”student”or”student’s”family;””d)A”personal”identifier,”such”as”the”student’s”social”security”number,”student”number,”or”biometric”record;””e)Other”indirect”identifiers,”such”as”the”student’s”date”of”birth,”place”of”birth,”and”mother’s”maiden”name;””f)Other”information”that,”alone”or”in”combination,”is”linked”or”linkable”to”a”specific”student”that”would”allow”a”reasonable”person”in”the”school”community,”who”does”not”have”knowledge”of”the”relevant”circumstances,”to”identify”the”student”with”reasonable”certainty;”or””g)Information”requested”by”a”person”who”the”educational”agency”or”institution”reasonably”believes”knows”the”identity”of”the”student”to”whom”the”education”record”relates.3″””Educational”agencies”or”institutions,”and”partner”entities,”such”as”technology”vendors,”community”based”organizations,”or”researchers,”interested”in”using”de/identification”as”a”privacy”protection”strategy,”must”pay”particular”attention”to”the”definition’s”inclusion”of””indirect”identifiers””and””other”information.””Data”de/identification”techniques”are”used”to”remove”the”direct”identifiers”described”above,”as”well”as”indirect”identifiers”and”other”information,”which”if”left”unaddressed,”could”be”used”to”identify”individual”students.”Other”examples”of”indirect”identifiers”include”race,”religion,”weight,”activities,”employment”information,”medical”information,”education”information,”and”financial”information.4″””Data!De&Identification!Techniques!!!!!Data”de/identification”–”removing”or”obscuring”PII”/”begins”with”eliminating”all”direct”student”identifiers”from”an”education”record,”but”education”agencies”and”institutions,”and”other”data”holders,”must”take”further”steps”to”ensure”that”indirect”identifiers”or”other”information”do”not”enable”an”unauthorized”actor”from”determining”a”student’s”identity.”These”further”steps”involve”using”sophisticated”mathematical”and”statistical”de/identification”techniques,”including”&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&3&FERPA,”10″U.S.C.”1232g;””34″CFR”§”99.3.”&4″See”Privacy”and”Technical”Assistance”Online”Glossary:&http://ptac.ed.gov/glossary.”Last”visited,”April”12,”2015.& Future&of&Privacy&Forum&July&2015&&3″leveraging”technology”to”ensure”the”methods”are”accurately”and”comprehensively”applied”across”large”and”complex”data”sets.”Selection”of”an”appropriate”de/identification”strategy”will”vary”based”on”specific”context,”including”whether”it”will”be”applied”to”individual”level”data”(information”collected”and”recorded”separately”for”each”student)”or”aggregate”data”(data”combined”from”several”measurements).”The”former”requires”much”more”robust”protections.”””The”U.S.”Department”of”Education’s”PTAC”provides”helpful”guidance”materials,”including”case”studies,”that”provide”detailed”information”about”de/identification”approaches,5″but”common”methods”include”the”following”strategies.6″”See”Addendum”A”for”high”level”examples”of”each”technique.”””Blurring-Reducing”the”precision”of”disclosed”data”to”minimize”the”certainty”of”individual”identification.”For”example”converting”continuous”data”elements”into”categorical”elements”that”subsume”unique”cases.””Perturbation-Making”small”changes”to”the”data”to”prevent”identification”of”individuals”from”unique”or”rare”population”groups.””For”example,”swapping”data”among”individual”cells”to”introduce”uncertainty.””Suppression-Removing”data,”for”example”from”a”cell”or”row,”to”prevent”the”identification”of”individuals”in”small”groups”or”those”with”unique”characteristics.””Usually”requires”suppression”of”non/sensitive”data.”””Sharing!Purpose!&!PII!Disclosure!Risk!assessment!!”Educational”agencies”and”institutions”planning”to”use”de/identification”techniques”to”enable”unconsented”data”sharing”–”in”instances”when”a”FERPA”disclosure”exception”does”not”apply”/”must”make”a””reasonable”determination”that”the”student’s”identity”is”not”personally”identifiable”because”of”unique”patterns”of”information”about”the”student”whether”through”single”or”multiple”releases,”and”taking”into”account”other”reasonably”available”information.”7″The”standard”for”making”this”determination”is”discussed”later”in”the”paper,”but”neither”FERPA,”nor”the”U.S.”Department”of”Education’s”FERPA”regulations,”provide”a””safe”harbor””listing”specific”steps”that”lead”to”appropriate”de/identification.”Instead,”federal”policy”provides”a”standard”for”making”case/by/case”judgments”of”PII”disclosure”risk”at”the”educational”agency,”institution,”or”approved”party”level.8″This”case/by/case”approach”means”that”the”list”of”indirect”identifiers”that”must”be”removed”or”obscured”to”achieve”appropriate”de/identification”will”likely”vary”by”circumstance.””””&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&5&Privacy”and”Technical”Assistance”Center:”http://ptac.ed.gov.”For”example,”Frequently!Asked!Questions!on!Disclosure!Avoidance,”PTAC/FAQ/2,”October”2012″(updated”May”2013),”Data!De&identification:!An!Overview!of!Basic!Terms,”PTAC/GL,”Oct”2012″(updated”May”2013),”Case!Study!#5:!Minimizing!Access!to!PII:!Bet!Practices!for!Access!Controls!and!Disclosure!Avoidance!Techniques,”PTAC/CS/5,”October”2012.”&6&See”also,”Federal”Committee”on”Statistical”Methodology’s”Statistical”Policy”Working”Paper”22″Report”on”Statistical”Disclosure”Limitation”Methodology,”(73″Fed.”Reg.”74806/35,”Dec”9,”2008).”7″73″FR”73833,”December”9,”2008.&8″73″FR”74834,”December”9,”2008.” Future&of&Privacy&Forum&July&2015&&4″Selecting”an”appropriate”de/identification”method”depends”in”part”on”examining”the”planned”data”sharing”purpose.”The”data”sharing”purpose”and”de/identification”strategy”must”be”compatible.9″For”example,”researchers”interested”in”examining”students’”performance”over”time”might”require”access”to”detailed,”accurate”academic”information”spanning”several”years”(limiting”use”of”de/identification”techniques”that”diminish”a”data’s”validity).”Researchers”studying”a”student”cohort’s”growth”toward”a”state’s”college”and”career”ready”standards”using”a”specific”pedagogy,”for”example,”would”not”be”able”to”use”data”de/identified”using”a”technique”that”limits”the”data’s”reliability”and”validity.”(Alternatively,”this”type”of”longitudinal”research”might”be”conducted”using”de/identified”data”linked”to”a”record”locator”to”enable”the”originating”educational”agency”or”institution”to”provide”de/identified”data”for”the”same”students”over”time.”Use”of”such”a”locator”does”not”render”the”data””personally”identifiable””under”FERPA,”but”it”does”trigger”special”requirements.)”Conversely,”data”shared”for”purposes”that”require”less”data”precision”and”accuracy,”such”as”software”training”or”technology”research”and”development,”could”use”much”more”aggressive”de/identification”strategies,”such”as”using”techniques”that”replace”sensitive”information”with”inauthentic”or”modified”data.”””Please”note,”using”de/identification”techniques”as”a”privacy”tool”does”not”always”involve”removing”all”PII,”but”in”situations”when”PII”remains”part”of”a”given”data”set”(i.e.”where”the”data”has”not”been”completely”de/identified),”unconsented”sharing”may”only”occur”with”consent”or”consistent”with”an”appropriate”FERPA”exception.”For”example,”an”educational”agency”or”institution”sharing”PII”under”a”qualified”FERPA”exception”may”wish”to”use”de/identification”techniques”to”minimize”PII”released”to”an”outside”entity,”even”though”they”may”lawfully”share”a”range”of”student”level”information.”To”be”more”specific,”a”researcher”might”conduct”a”study”that”requires”a”discrete”list”of”indirect”identifiers”that”together”could”lead”to”the”student’s”identification,”such”as”a”student’s”age,”race”and”family”financial”information,”but”not”requiring”other”PII”found”in”the”same”education”records.”In”such”an”instance,”these”three”pieces”of”personally”identifiable”student”data”–”and”other”information”attached”them”/”would”remain”subject”to”FERPA’s”disclosure”limitations”and”other”requirements,”but”de/identification”techniques”(e.g.,”suppression)”could”provide”additional”protection”for”the”student”by”removing”data,”for”example”from”a”cell”or”row,”unnecessary”to”the”study.”Researchers”lawfully”using”PII”in”this”context”and”other”cases,”however,”must”completely”de/identify”any”report”or”other”information”before”releasing”it”to”the”public”or”other”parties,”including”other”researchers.10″””Entities”planning”to”use”de/identification”techniques”must”mitigate”the”risk”of”exposing”the”identity”of”individual”students.”Therefore,”after”examining”the”requirements”of”a”given”data”sharing”purpose,”education”data”holders”must”also”assess”the”risks”associated”with”their”planned”disclosure,”including”considering”past”data”releases”(the”risk”of”re/identification”is”cumulative),”sample”size,”the”nature”of”the”data”recipient,11″whether”the”data”will”be”further”shared”or”made”&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&9&Data!De&identification:!An!Overview!of!Basic!Terms.”U.S.”Department”of”Education”Privacy”Technical”Assistance”Center,”PTAC/GL,”Oct”2012″(updated”May”2013),”p.”4.&10″73″FR”74834,”December”9,”2008.””11″The”Department”of”Education”has”said””there”is”no”statutory”authority”in”FERPA”to”modify”the”prohibition”on”disclosure”of”personally”identifiable”information”from”education”records,”or”the”exceptions”to”the”written”consent”requirement,”based”on”the”track”record”of”the”party,”including”journalists”and”researchers,”in”maintaining”the”confidentiality”of”information”from”education” Future&of&Privacy&Forum&July&2015&&5″public,”and”other”contextual”conditions.12″More”aggressive”de/identification”strategies”are”required”in”situations”when”the”student”data”is”potentially”at”greater”risk”of”re/identification.”””For”example,”de/identified”data”shared”for”a”specific”purpose”with”a”trusted”public”or”private”entity”such”as”a”state”department”of”education,”institution”of”higher”education,”or”professional”vendor”with”strict”legal”and”contract”protections”(e.g.,”an”agreement”with”strict”re/disclosure”limitations),”might”be”less”likely”to”be”widely”available”later”(decreasing”the”re/identification”threat”associated”with”cumulative”data”releases),”compared”for”example”to”annual”school”or”district”performance”data”posted”directly”to”a”public”website”to”comply”with”federal”and”state”accountability”requirements.”Why”is”greater”public”availability”of”a”properly”de/identified”data”set”a”potential”problem?”In”some”cases,”de/identified”data”might”be”subject”to”nefarious”comparisons”with”other”data”sets”(e.g.,”with”widely”available”student””directory”information”)”or”other”attempts”to”reveal”PII.”When”data”enters”the”public”domain,”it”could”be”exposed”to”cutting/edge”tools”and”techniques”designed”to”compare”the”de/identified”data”to”other”publicly”available”data”sets”and”thus”reveal”a”students’”identity”(the”FERPA”implications”of”such”a”breakthrough”are”discussed”further”below).””Although”experts”disagree”about”the”extent”to”which”new”technologies”and”techniques”can””back”map””de/identified”data”to”reveal”a”student’s”identity,”a”serious”statistical”analysis”that”ensures”all”direct”and”indirect”identifiers”have”been”removed”can”be”performed”to”ensure”any”re/identification”risk”is”remote.””””In”short,”prudent”student”data”holders”should”consider”using”–”in”light”of”new”data”mining”and”comparison”techniques”that”might”be”more”effective”than”is”commonly”accepted”–”the”most”aggressive”de/identification”strategies”possible”when”data”will”be”made”public”or”shared”widely.””When”data”is”shared”with”limited”restricted”parties”under”strong”controls”and”under”a”FERP”exception,”a”combination”of”technical,”administrative”and”contractual”controls”will”be”appropriate”for”reasonable”de/identification”measures”that”may”preserve”greater”utility”of”the”data.””Application-of-FERPA-to-De#Identified-Records–“As”a”general”rule,”FERPA”prohibits”the”disclosure”of”education”records”containing”personally”identifiable”student”data”without”parent”or”eligible”student”consent.13″Therefore,”the”release”of”education”records”that”have”been”appropriately”de/identified”–”purged”of”direct”and”all”necessary”indirect”identifiers”in”a”given”context”/”is”not”considered”a””disclosure””under”FERPA,”since”by”definition”such”records”do”not”contain”PII.14″”Properly”de/identified”student”data”thus”may”be”shared”without”limitation”under”FERPA”(although”other”federal”and”state”privacy”laws”may”apply).”Furthermore,””de/identified”information”from”education”records”is”not”subject”to”any”&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&records”that”they”have”received.””(73″FR”74834).””Nonetheless,”the”recipients’”identity”should”likely”be”considered”among”other”variables”in”each”risk”assessment.”12″Frequently!Asked!Questions!–!Disclosure!Avoidance,!p.”4,”PTAC/FAQ/2,”Oct”2012″(updated”May”2013).”p.2/3&13″20″U.S.C.”1232g(b)(1)”14″34″CFR”99.31(b)(1)” Future&of&Privacy&Forum&July&2015&&6″destruction”requirements”because,”by”definition,”it”is”not”‘personally”identifiable”information.”15″The”Department”has”said,”however,”a”party”releasing”de/identified”student”data”might”mitigate”risks”associated”with”future”data”releases”by”independently”requiring”data”destruction”in”some”circumstances.16″””There”is”one”important”exception,”however,”to”FERPA’s”unconsented”sharing”exception”for”de/identified”data.”De/identified”data”coupled”with”a”record”code”or”locator”by”an”educational”agency”or”institution”–”allowing”it”to”be”matched”later”to”the”record”source”/”may”only”be”shared”for”education”research.”Although”the”Department’s”regulations”and”guidance”do”not”specifically”discuss”the”question,”it”appears”that”educational”agencies”or”institutions”may”select”any”qualified”third”party”to”conduct”research”under”this”provision,”but”all”secondary”(non/research)”uses”of”de/identified”data”with”a”record”locator”are”prohibited.”Furthermore,”the”data”sharing”entity”may”not”disclose”information”about”how”it”generated”and”assigned”the”record”code,”or”other”information”that”might”allow”a”data”recipient”to”identify”a”student”based”on”the”record”code.”Lastly,”the”record”code”must”not”be”based”on”a”student’s”social”security”number”or”other”personal”information.17″Such”a”data”set”remains”categorized”as””de/identified,””and”may”thus”be”shared”without”parent”or”eligible”student”consent,”but”unlike”other”de/identified”data”it”may”only”be”shared”for”the”research”purpose”specified”to”the”educational”agency”or”institution,”consistent”with”the”other”requirements”described”above.””””Before”such”data”sharing”can”occur,”however,”the”education”record”must”be”properly”de/identified.”As”referenced”above,”the””releasing”party”is”responsible”for”conducting”its”own”analysis”and”identifying”the”best”methods”to”protect”the”confidentiality”of”information”from”education”records”it”chooses”to”release.”18″This”determination”depends”on”FERPA’s”disclosure”risk”assessment”standard.”This”standard”asks”whether”a””reasonable”person”in”the”school”community”who”does”not”have”personal”knowledge”of”the”relevant”circumstances””could”use”the”released”data,”and”other”publicly”available”data,”to”identify”an”individual”student”with””reasonable”certainty.”19″This”standard”extends”to”possible”data”holders”beyond”the”literal”school”community.””The”Department”of”Education”does”not”require”educational”agencies”and”institutions”to”use”specific”data”disclosure”avoidance”techniques”to”achieve”this”standard,”and”stated”in”a”recent”rulemaking,””it”is”not”possible”to”prescribe”or”identify”a”single”method”to”minimize”the”risk”of”disclosing”personally”identifiable”information”that”will”apply”in”every”circumstance…”20″The”Department”has”also”said””determining”whether”a”particular”set”of”methods”for”de/identifying”data”and”limiting”disclosure”risk”is”adequate”cannot”be”made”without”examining”the”underlying”data”sets,”other”data”that”have”been”released,”publicly”available”directories”and”other”data”that”are”linked”or”linkable”to”the”information”in”questions.21″In”other”words,”the”party”releasing”data”&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&15&73″FR”15585,”March”24,”2008&16&73″FR”74835,”December”9,”2008&17″34″CFR”99.31(b)(2)(i)/(iii).”18″73″FR”74835,”December”9,”2008.””19″34″CFR”§”99.3,”34″CFR”§99.31(b)(1)”20″73″FR”74835,”December”9,”2008″21″Ibid”at”74835& Future&of&Privacy&Forum&July&2015&&7″must”perform”a”context”specific”analysis”and”identify”the”best”method”for”protecting”student”information”subject”to”disclosures.”Proper”application”of”the”accepted”mathematical”and”statistical”de/identification”strategies”described”earlier”in”the”paper”meet”this”legal”standard”in”many”instances,”but”by”law”each”sharing”context”must”be”independently”analyzed”against”the”Department’s”reasonableness”standard.22″””Some”experts”have”argued”that”given”recent”cases”where”researchers”have”leveraged”access”to”other”publicly”available”data”sets”to”identify”specific”individuals,”absolute”data”de/identification”may”be”impossible,”or”at”a”minimum,”increasingly”difficult.23″In”light”of”this”uncertainty,”data”sharing”parties”should”very”carefully”analyze”each”proposed”disclosure”of”de/identified”data”against”FERPA’s”reasonableness”standard”and”also”consider”using”contracts”that”specify”protections”–”above”and”beyond”FERPA””/”that”could”further”minimize”the”risk”of”re/identification.””””De#Identified-Data:-Retention-and-Destruction-“FERPA”permits”third”party”data”holders,”including”vendors,”to”retain”and”use”appropriately”de/identified”data”–”so”long”as”it”is”not”associated”with”a”record”locator”/for”any”secondary”purpose.””Furthermore,”FERPA”does”not”describe”how”de/identified”data”should”be”managed,”including,”as”described”above,”when”and”how”the”data”should”be”destroyed.”Vendors”and”other”third”party”holders”must,”however,”ensure”that”a”given”de/identified”data”set”is”not”subject”to”relevant”contract”terms,”or”other”Federal,”state,”and”local”privacy”laws”and”regulations,”which”might”contain”more”stringent”data”retention”or”destruction”requirements.24″For”example,”personal”data”subject”to”the”Children’s”Online”Privacy”Protection”Act”may”only”be”retained”so”long”as”is”necessary”to”fulfill”the”purpose”for”which”it”was”collected,”and”COPPA”covered”entities”must”delete”the”information”using”reasonable”measures”to”protect”against”its”unauthorized”access”or”use.25″”””Although”FERPA”does”not”govern”the”use,”retention”and”destruction”of”properly”de/identified”data,”third”parties”should”have”sound”policies”–”guided”by”National”Institute”of”Standards”and”Technology”or”PTAC”best”practice”recommendations”/”addressing”these”issues.”This”internal,”independent”step”includes”ensuring”that”de/identified”data”is”destroyed”when”it”is”no”longer”needed,”in”order”to”minimize”re/identification”risks”associated”with”possible”future”efforts”to”compare”and”link”the”data”with”other”data”sets.”Data”holders”must”also”ensure”that”they”take”proper”actions”to”destroy”data.”Simply”deleting”data”is”not”sufficient”in”most”cases”and”PTAC’s”data”destruction”best”practices”provide”helpful”guidance.”PTAC”recommends”that”data”holders””make”risk/based”decisions”on”which”[destruction]”method”/”[e.g.”clearing,”purging,”or”destroying”data]”/””is”most”appropriate”based”on”the”data”type,”risk”of”disclosure,”and”the”impact”if”that”data”were”to”be”disclosed”without”authorization.”26″The”data”de/identification”method”used”to”remove”&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&22″34″CFR”99.31.(b)(1).”See”also,”PTAC”Frequently!Asked!Questions!–!Disclosure!Avoidance,!p.”4,”PTAC/FAQ/2,”Oct”2012″(updated”May”2013).””23″Broken!Promises!of!Privacy:!Responding!to!the!Surprising!Failure!of!Anonymization,”Paul”Ohm,”University”of”Colorado”Law”School,”UCLA”Law”Review,”Vol.”57,”p.”1701,”2010″.-24″Privacy”and”Technical”Assistance”Center,”Best!Practices!for!Data!Destruction,!p.”5,”PTAC/IB/5,”May”2014.””25″16″C.F.R.”§”312.10.”26″PTAC”Best”Practices”for”Data”Destruction,”p.”5.”” Future&of&Privacy&Forum&July&2015&&8″PII”from”a”data”set”should”be”a”central”factor”in”making”this”determination.”Data”holders”seeking”additional”guidance”on”proper”destruction”strategies”should”consult”recommendations”made”by”the”National”Institute”of”Standards”and”Technology”and”other”expert”sources.27″”Conclusion-De/identification”offers”an”important”tool”for”educational”agencies,”institutions”and”their”partners”seeking”to”maximize”student”data’s”potential”value”to”improving”teaching”and”learning,”while”also”carefully”protecting”student”privacy”and”confidentiality.”Proper”data”de/identification”requires,”however,”deep”technical”knowledge”and”expertise”and”adherence”to”industry”best”practice.””Therefore,”student”data”holders”should”not”attempt”to”de/identify”student”data”sets”without”competent”support.”They”should”also”consult”competent”legal”counsel”to”ensure”that”their”data”management”policies”and”practices”–”including”de/identification”strategies”/”comply”with”FERPA”and”all”other”relevant”federal,”state,”and”local”laws”and”requirements”potentially”applicable”to”the”data”they”manage.”&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&27″National”Institute”of”Standards”and”Technology”(NIST)”Special”Publication”800/88″Rev.”1:”Guidelines”for”Media”Sanitization.”December”2014.””& !Illustration!of!Common!De1Identification!Measures!in!Aggregate!Data!Sets!!!!!!!!!!!!!!!!!!!!!!Joan’s!Director!Identifiers!Student!Name:!Joan!Smith!Students!Parents:!John!Smith!&!Jackie!Smith!Address:!0000!00th!Street,!!Washington,D.C.!Student!Number:!4444!Social!Security!Number:!555C555C555!!Joan’s!Indirect!Identifiers!Data!of!Birth:!11/01/2000!Race:!Alaska!Native!Gender:!Female!Place!of!Birth:!Washington,!D.C.!Family!Income:!$85,000!GPA:!3.75!!!!All!Direct!Identifiers!Removed!Joan’s!Indirect!Identifiers!!Data!of!Birth:!2000!Race:!Unique!Characteristic!Removed!Gender:!Female!Mother’s!Maiden!Name:!Unique!Characteristic!Removed!Place!of!Birth:!MidCAtlantic!Family!Income:!$50,000!C!$100,000!GPA:!3.5!–!4.0!Mike’s!Indirect!Identifiers!!Data!of!Birth:!1999!!Race:!Unique!Characteristic!Removed!Gender:!Female!Mother’s!Maiden!Name:!Unique!Characteristic!Removed!Place!of!Birth:!Midwest!Family!Income:!$50,000!C!$100,000!GPA:!3.5!–!4.0!Joan’s!Indirect!Identifiers!!Data!of!Birth:!2000!Race:!Unique!Characteristic!Removed!Gender:!Male!Mother’s!Maiden!Name:!Unique!Characteristic!Removed!Place!of!Birth:!Northeast!Family!Income:!$50,000!C!$100,000!GPA:!3.5!–!4.0!!!All!Direct!Identifiers!Removed!Joan’s!Indirect!Identifiers!!Data!of!Birth:!11/01/2000!Race:!Alaska!Native!Gender:!Female!Place!of!Birth:!Washington,!D.C.!Family!Income:!$85,000!GPA:!3.75!!!!All!Direct!Identifiers!Removed!Joan’s!Indirect!Identifiers!!Data!of!Birth:!2000!Race:!Minority!Gender:!Female!Mother’s!Maiden!Name:!Johnson!Place!of!Birth:!MidCAtlantic!Family!Income:!$50,000!C!$100,000!GPA:!3.5!–!4.0!Raw$Individual$Student$Data$in$Aggregate$Data$Table$!Redacted$Individual$Student$Level$Data$in$Aggregate$Data$Table$$Blurring$(Reducing$Data$Precision$including$$Using$Broader$Categories)$$Suppression$(Removing$Data$from$a$Cell$or$Row)$Perturbation$(Small$Data$Changes,$including$through$$Swapping$Data$among$Cells)$$$
Big-Data-and-Privacy-Paper-Collection
Solutions to many pressing economic and societal challenges lie in better understanding data. New tools for analyzing disparate information sets, called Big Data, have revolutionized our ability to find signals amongst the noise. Big Data techniques hold promise for b reakthroughs ranging from better health care, a cleaner environment, safer cities, and more effective marketing. […]
Privacy Trends: Four State Bills to Watch that Diverge from California and Washington Models
During 2021, state lawmakers have proposed a range of models to regulate consumer privacy and data protection. As the first state to pass consumer privacy legislation in 2018, California established a highly influential model with the California Consumer Privacy Act. In the years since, other states have introduced dozens of nearly identical CCPA-like state bills. […]
California’s SB 980 Would Codify Strong Protections for Genetic Data
Author: John Verdi (Vice President of Policy) This week, SB 980 (the “Genetic Information Privacy Act”) passed the California State Assembly and State Senate, with near unanimous support (54-10 and 39-0). If signed by the Governor before the Sept. 30 deadline, the law would become the first comprehensive genetic privacy law in the United States, […]
Privacy Papers for Policymakers for 2019
PRIVACY PAPERS FOR POLICYMAKERS 2019 This material is based upon work supported by the National Science Foundation under Grant No. 1837413. Privacy Papers for Policymakers 2019 1 Februar y 6, 2020 We are pleased to introduce FPF’s tenth annual Privacy Papers for Policymakers. Each year, we invite privacy scholars and authors to submit scholarship for […]
California SB 980 Would Codify Many of FPF’s Best Practices for Consumer Genetic Testing Services, but Key Differences Remain
Authors: John Verdi (Vice President of Policy) and Katelyn Ringrose (Christopher Wolf Diversity Law Fellow) In July 2018, the Future of Privacy Forum released Privacy Best Practices for Consumer Genetic Testing Services. FPF developed the Best Practices following consultation with technical experts, regulators, leading consumer genetic and personal genomic testing companies, and civil society. The […]
CAV Merged Presentation Slides 6-25-20 copy-compressed
Digital Data Flows Masterclass #7:Connected and Autonomous VehiclesJune 25, 2020 Future of Privacy ForumOurMissionBridging the policymaker-industry-academic gap in privacy policyDeveloping privacy protections, ethical norms, & responsible business practices.OurWorkstreamsDe-identificationSmart CommunitiesYouth PrivacyAI & Machine LearningLocation & Ad TechInternet of ThingsBiometricsSupporters150+ Companies25+ Leading Academics15+ Advocates and Civil Society5Foundations Archived videos and Digital Data Flows Masterclass Series:1.Artificial Intelligence & […]